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a b s t r a c t

This paper proposes and analyzes a weak Galerkin (WG) finite element method for 2- and
3-dimensional convection–diffusion–reaction problems on conforming or nonconforming
polygon/polyhedral meshes. The WG method uses piecewise-polynomial approximations
of degrees k (k ≥ 0) for both the scalar function and its trace on the inter-element
boundaries. We show that the method is robust in the sense that the derived a priori error
estimates is uniform with respect to the coefficients for sufficient smooth true solutions.
Numerical experiments confirm the theoretical results.
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1. Introduction

In this paper, we consider a weak Galerkin (WG) finite element method for the following convection–diffusion–reaction
equation: seek a scalar function u such that

−ε1u + ∇ · (bu)+ σu = f inΩ,
u = g on ∂Ω. (1.1)

Here Ω ⊂ Rd (d = 2, 3) is a polygonal or polyhedral domain, f ∈ L2(Ω), ε > 0, b = b(x) ∈ [W 1,∞(Ω)]d,
σ = σ(x) ∈ L∞(Ω) and g ∈ H1/2(∂Ω).

Similarly to [1], for the subsequent stability analysis we introduce several assumptions, A1–A3, on the velocity vector b
and the ‘‘effective’’ reaction function σ̄ := σ +

1
2∇ · b.

A1. σ̄ has a nonnegative lower bound, i.e.,

σ0 := inf
x∈Ω

σ̄ ≥ 0. (1.2)

A2. b has no closed curves and

|b(x)| ≠ 0 for all x ∈ Ω.

A3. There exist two positive constants, cb and cσ , such that

∥b∥0,∞ ≥ cb∥b∥1,∞, (1.3)
σ0 + b0 ≥ cσ∥σ̄∥0,∞ with b0 := ∥b∥0,∞/L, (1.4)

where L is the diameter ofΩ .
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As shown in [1], the assumption A2 implies that there exists a functionψ ∈ W k+1,∞(Ω) for any integer k ≥ 0, such that

b · ∇ψ ≥ 2b0 > 0, ∀x ∈ Ω. (1.5)

It is well-known that standard finite element methods often suffer from the deterioration of numerical accuracy for
convection-dominated convection–diffusion equations due to local singularities arising from interior or boundary layers.
A lot of research has been devoted to solving such kinds of problems properly, such as stabilized methods [2–6] and
discontinuous Galerkin (DG) methods [1,7,4,5,8–10].

In most DG methods, numerical fluxes are specified at the interfaces of elements, and the convection field b is assumed
to be either constant or divergence-free. By following a different way, a class of DG methods were analyzed in [1] for the
convection–diffusion–reaction model (1.1), where the weighted-residual approach of [11] was applied to derive the DG
formulations. The methods are shown to be well suited for not only convection-dominated regimes, but also diffusion-
dominated, reaction-dominated and intermediate regimes. However, an inconvenient feature of the DG methods is that
the penalization parameter for stability is required to be a ‘‘sufficiently’’ large (practically unknown) number. This was
remedied by local DG (LDG) methods [4] and hybridizable DG (HDG) methods [12–14], where the diffusion coefficient a
is a symmetric d × d matrix function that is uniformly positive definite on Ω and thus the analyses therein exclude the
convection-dominated case. In [15], a class of HDGmethods were applied to the convection–diffusion problems and shown
to be well suited for convection-dominated regimes.

Closely related to the HDG framework is the weak Galerkin (WG) method developed in [16,17] for second-order elliptic
problems. The WG method is designed by using a weakly defined gradient operator over functions with discontinuity,
and allows the use of totally discontinuous functions in the finite element procedure. Similar to the HDG framework, the
WG method allows the use of conforming or nonconforming meshes of arbitrary polygons/polyhedrals, and possesses the
property of local elimination, i.e., the unknowns defined in the interior of elements can be eliminated locally by using the
unknowns defined on the interfaces of all elements. Applications of WG methods to different types of PDEs can be found
in [18,19,17,20–23]. We refer to [24] for a modified WG Galerkin finite element method for convection–diffusion problems
in 2D.

The goal of this paper is to propose and analyze a class of robust WG finite element methods for the
convection–diffusion–reaction problem (1.1). We note that the convection field b is not assumed to be divergence-free
and the reaction coefficient σ is a function. We will show that the proposed methods are of convergence rates independent
of the coefficients ε, b and σ , providing sufficiently smooth solutions. We make a simple comparison in Table 1.1 between
the methods of [1,15] and ours. We mention that, due to the property of local elimination, the WG and HDG methods lead
to discrete systems of smaller sizes than the same order DG methods. It should be pointed out that the elliptic problem
considered in [16] is actually in the convection–diffusion–reaction format. However, the WG scheme therein was analyzed
only for simplex meshes and the derived error estimates are not uniform with respect to the coefficients.

The rest of this paper is organized as follows. In Section 2, we introduce the WG scheme. Section 3 derives stability and
Section 4 is devoted to the error estimation. Finally, Section 5 provides several numerical examples to verify our theoretical
results.

Throughout this paper, we use C to denote a positive constant independent of h, hT , hE , b, ε and σ , and not necessarily
the same at its each occurrence. For simplicity we use a . b (a & b) to represent a ≤ Cb (a ≥ Cb).

2. WG finite element method

2.1. Notations and preliminary results

For any bounded domain Λ ⊂ Rs (s = d, d − 1), let Hm(Λ) and Hm
0 (Λ) denote the usual mth-order Sobolev spaces on

Λ, and ∥ · ∥m,Λ, | · |m,Λ denote the norm and semi-norm on these spaces. We use (·, ·)m,Λ to denote the inner product of
Hm(Λ), with (·, ·)Λ := (·, ·)0,Λ. WhenΛ = Ω , we denote ∥ · ∥m := ∥ · ∥m,Ω , | · |m := | · |m,Ω , (·, ·) := (·, ·)Ω . In particular,
when Λ ∈ Rd−1, we use ⟨·, ·⟩Λ to replace (·, ·)Λ. We note that bold face fonts will be used for vector (or tensor) analogues
of the Sobolev spaces along with vector-valued (or tensor-valued) functions. For an integer k ≥ 0, Pk(Λ) denotes the set of
all polynomials defined onΛwith degree not greater than k.

Let Th =


{T } be a shape regular partition (to be defined later) of the domainΩ consists of arbitrary polygons. We note
that Th can be a conforming partition or a nonconforming partition which allows hanging nodes.

For any T ∈ Th, we let hT be the infimum of the diameters of circles (or spheres) containing T and denote the mesh size
h := maxT∈Th hT .

An edge (or face) E on the boundary ∂T of T is called a proper edge (or face) if the endpoints (or vertexes) of the edge (or
face) E are the nodes of Th and no other nodes of Th are on E. See Fig. 2.1 for example, EF , FH and HI are proper edges, while
EH , FI and EI are not. Let Eh =


{E} be the union of all proper edges (faces) of T ∈ Th. We denote by hE the length of edge

E if d = 2 and the infimum of the diameters of circles containing face E if d = 3. For all T ∈ Th and E ∈ Eh, we denote by nT
and nE the unit outward normal vectors along ∂T and E, respectively.

The partition Th is called shape regular in the sense that assumptionsM1–M2 hold true.
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