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a b s t r a c t

Theproblemof recovering a quantile function of a positive randomvariable via the values of
moments or given the values of its Laplace transform is studied. Two new approximations
as well as two new estimates of a quantile function given the sample from underlying
distribution are proposed. The uniform and L1 upper bounds of proposed estimates are
derived. The plots illustrate the behavior of the recovered approximants for the moderate
and large sample sizes.
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1. Introduction

Themain aim of thiswork is to construct accurate approximations of a quantile functionQ under incomplete information
upon the underlying distribution function (df) F . Namely, we assume that the only available data represent the values of a
finite number of moments (‘‘cumulative frequency’’ moments, the Laplace transform) of F or Q .

We propose two methods for approximation and estimation of a quantile function Q . The first method (method I) is
based on the knowledge of the so-called ‘‘cumulative frequency’’ moments of F . The second one (method II) enables us to
recover Q when only the integer order moments of F are known (or estimated) up to some order α ∈ N.

There aremanydifferent nonparametricmethods alreadyproposed for estimating the quantile functionQ . Let usmention
only some of them. For example, the estimator suggested by Harrell and Davis [1] is based on a weighted sum of order
statistics. Sheather and Marron [2] studied properties of kernel based approaches that require choosing the smoothing
parameter. Swanepoel and Van Graan [3] suggested the kernel type estimate of a quantile function using the nonparametric
transformation technique (see also [4] for details). The method based on the cross-validation has been proposed in [5].
Asymptotic equivalence between various estimators based on weighted order statistics were investigated by Sheather and
Marron [2]. Brewer [6] constructed quantile estimate based on Bernstein polynomials.

The advantage of our approach is in its applicability to situations where only ordinary, frequency moments, or the finite
number of values of the Laplace transform of underlying distribution F are available. In such cases the traditional estimates
proposed, say, in [1,7,8], could not be applied. On the other hand, when observations from F are available, i.e., F is observed
directly, the moment-recovered (MR)-constructions (see (2) and (11), as well as (28)) provide the estimator similar to the
one proposed in [1]. It is worth noting that the weak convergence of properly normalized empirical quantile function based
on the empirical distribution has been proved in Shorack and Wellner [9]. The question about weak convergence of the
estimate based on MR-construction will be the subject of our study in a separate article.

The rest of the paper is organized as follows. In Section 2 twoMR-approximants of the quantile functionQ are introduced,
and the rate of approximation in sup- and L1-norms are derived. Two cases when the support of underlying df F is finite and
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infinite are considered. The weak upper bounds for corresponding estimates of Q are established as well. In Section 3 we
applied theMR-construction for estimating the Lorenz curve L. The weak upper bound in sup-norm of the plug-in estimator
of L is derived. Simulation study is conducted and the graphical illustrations for several examples are presented.

2. Moment-recovered constructions

Assume F is an absolute continuouswith respect to the Lebesguemeasure on R+. Denote corresponding density function
by f . In the sequel we always assume that the moment sequence {


t j d F(t), j ∈ N} as well as the sequence of ‘‘cumulative

frequency’’ moments {

[F(t)]j d t, j ∈ N} of F determines F uniquely. Denote by ∥f ∥ = sup0≤x≤T |f (x)| < ∞ and

∥f ∥L1 =


|f (t)|dt the sup- and L1-norm, respectively.

2.1. Method I

Consider the following moment sequencem−

F = {m−(j, F), j = 0, 1, . . . , α} with

m−(j, F) =

 T

0
[F(t)]j d t. (1)

We refer to [10], where the question of moment-determination based on the so-called frequency moments is studied.
Without loss of generality let us assume T = 1. For each x ∈ [0, 1] consider the following approximation of a quantile
function Q (x) = inf{t : F(t) ≥ x}:

Q−

α (x) =

K−1

α m−

F


(x), (2)

where
K−1

α m−

F


(x) =

⌊αx⌋
k=0

α
j=k


α

j


j
k


(−1)j−k m−(j, F), x ∈ [0, 1]. (3)

Here α ∈ N is a parameter that specifies the number of moments used in the proposed approximation (cf. with [11]). Here,
in (3) and in the sequel, wewill use notations ⌊αx⌋ and ⌈αx⌉ to denote the integer and the rounding part of αx, respectively.

Theorem 1. If Q ′,Q ′′ are bounded on (0, 1), then

Q−

α (x) − Q (x) =
1

α + 1


1 − x + ⌊αx⌋ − αx


Q ′(x) +

1
2
x (1 − x)Q ′′(x)


+ o


1
α


(4)

and, if in (3)–(4) we use ⌈αx⌉ instead of ⌊αx⌋, then

∥Q−

α − Q∥ ≤
1

α + 1

3
2

∥Q ′
∥ +

1
8
∥Q ′′

∥


+ o


1
α


, as α → ∞.

Proof. Substitution of (1) in right hand side of (3) yields another representation of Q−
α :

Q−

α (x) =

 1

0
Bα(F(t), x) dt =

 1

0
Bα(t, x) dQ (t). (5)

Here, the integrant in (5) has very simple form with

Bα(t, x) =

⌊αx⌋
k=0


α

k


tk (1 − t)α−k, 0 < t < 1. (6)

Now, integration by parts in the right-hand side of (5) gives:

Q−

α (x) − Q (x) =

 1

0
Bα(t, x) dQ (t) − Q (x) =

 1

0
[Q (t) − Q (x)] β(t, c, d − 1)dt. (7)

Here β(·, c, d) is a density function of a Beta distribution with the shape parameters c = ⌊αx⌋ + 1 and d = α − ⌊αx⌋ + 1.
It forms a δ sequence as α → ∞ with mean, θα =

⌊αx⌋+1
α+1 and variance

σ 2
α =

(⌊αx⌋ + 1)(α − ⌊αx⌋)
(α + 1)2(α + 2)

.

Note also that θα −x =
1−x
α+1 +∆1,α(x)with∆1,α(x) =

⌊αx⌋−αx
α+1 and σ 2

α =
x(1−x)
(α+2) +∆2,α(x), where∆2,α ≤

2
(α+2)2

(see [12,13]).
Applying the Taylor series expansion of Q (t) around t = x in (7) and using similar steps performed in the proof of
Theorem 1(ii) in [14], we derive (4). �
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