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In this paper, we consider 3D wave propagation problems in unbounded domains, such as 
those of acoustic waves in non viscous fluids, or of seismic waves in (infinite) homogeneous 
isotropic materials, where the propagation velocity c is much higher than 1. For example, 
in the case of air and water c ≈ 343 m/s and c ≈ 1500 m/s respectively, while for seismic 
P-waves in linear solids we may have c ≈ 6000 m/s or higher. These waves can be 
generated by sources, possible away from the obstacles. We further assume that the 
dimensions of the obstacles are much smaller than that of the wave velocity, and that 
the problem transients are not excessively short.
For their solution we consider two different approaches. The first directly uses a known 
space–time boundary integral equation to determine the problem solution. In the second 
one, after having defined an artificial boundary delimiting the region of computational 
interest, the above mentioned integral equation is interpreted as a non reflecting boundary 
condition to be coupled with a classical finite element method.
For such problems, we show that in some cases the computational cost and storage, 
required by the above numerical approaches, can be significantly reduced by taking into 
account a property that till now has not been considered. To show the effectiveness of 
this reduction, the proposed approach is applied to several problems, including multiple 
scattering.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, space–time Boundary Integral Equations (BIE) have been successfully applied to wave propagation 
problems defined in the exterior of a bounded domain (see, for example, [9], [24], [3], [19], [26], [15], [10], [2], [27], [16], 
[5], [4], [25], [18], [17], [22], [12]).

Most of them, however, are for homogeneous problems with trivial initial values. Furthermore, they are generally used 
to determine the problem solution at chosen points. Only in the last few years (see [13], [2], [14], [6]), a BIE for the 
classical wave equation has been used to define a Non Reflecting Boundary Condition (NRBC) on a chosen artificial boundary, 
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surrounding the computational domain. Its discretization is then coupled with that of the domain of interest by means of 
finite elements or finite differences.

In the case of the classical 3D non homogeneous wave equation, the problem we consider in this paper is the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
c2 ue

tt(x, t) − �ue(x, t) = f (x, t) in �e × (0, T )

ue(x, t) = g(x, t) in � × (0, T )

ue(x,0) = u0(x) in �e

ue
t (x,0) = v0(x) in �e

(1)

where �e = R
3 \�i , �i being a bounded open domain, having a smooth boundary �, or the union ∪κ

k=1�i
k of well separated 

domains of this type. As often occurs in practical situations, we assume that the initial values u0, v0 and the source term f
have local supports. Furthermore, we also assume that these data satisfy the smoothness and compatibility conditions which 
guarantee a sufficiently smooth solution ue , as required (see [15], [24]) by the numerical approach we will describe in the 
next section.

To solve problem (1) we will consider the following single–double layer BIE (see [14]):

1

2
ue(x, t) − (V∂nue)(x, t) + (Kue)(x, t) = Iu0(x, t) + I v0(x, t) + I f (x, t) x ∈ �, (2)

with

Vψ(x, t) :=
t∫

0

∫
�

G(x − y, t − τ )ψ(y, τ )d�y dτ =
∫
�

ψ(y, t − ‖x − y‖/c)

4π‖x − y‖ d�y (3)

and

Kϕ(x, t) :=
t∫

0

∫
�

∂nG(x − y, t − τ )ϕ(y, τ )d�y dτ =
∫
�

∂n
ϕ(y, t − ‖x − y‖/c)

4π‖x − y‖ d�y. (4)

The last expressions in (3) and (4) have been obtained by interchanging (see [15]) the time and space integrals in the 
corresponding representations, and using the wave equation fundamental solution expression

G(x, t) = δ(t − ‖x‖/c)

4π‖x‖ , (5)

where δ(·) is the well known Dirac delta function. The symbol ∂n = ∂ny denotes the outward unit normal (distributional) 
derivative, with respect to the y-variable, on the boundary �.

The “volume” terms Iu0 , I v0 and I f are generated by the non homogeneous initial conditions and the non trivial source, 
respectively. These volume terms have the following integral representations (see [15]):

Iu0(x, t) = ∂

∂t

∫
supp(u0)

G(x − y, t) u0(y)dy, (6)

I v0(x, t) =
∫

supp(v0)

G(x − y, t) v0(y)dy, (7)

I f (x, t) =
t∫

0

∫
supp( f )

G(x − y, t − τ ) f (y, τ )dy dτ . (8)

The mapping properties of the above operators V, K, when these are acting in proper functional spaces, are well-known; 
see, for example, [24], [21], [28]. In particular, for any real r ≥ 0,

V : Hr+1
0 (0, T ; H−1/2(�)) → Hr

0(0, T ; H1/2(�)) (9)

and

K : Hr+3/2
0 (0, T ; H1/2(�)) → Hr

0(0, T ; H1/2(�)) (10)

are bounded.
The above spaces are defined as follows. Set first Hr

0(0, T ) = {g|(0,T )
: g ∈ Hr(R) with g ≡ 0 on (−∞, 0)}, where Hr denotes 

the classical Sobolev space of order r. When r is an integer, this space consists of those functions g whose r-th distributional 
derivative is in L2(0, T ) and which have g(0) = . . . g(r−1)(0) = 0. Then:
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