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Chromatographic processes can be modeled by nonlinear, convection-dominated partial 
differential equations, together with nonlinear relations: the adsorption isotherms. In 
this paper we consider the nonlinear equilibrium dispersive (ED) model with adsorption 
isotherms of Langmuir type. We show that, in this case, the ED model can be written 
as a system of conservation laws when the dispersion coefficient vanishes. We also 
show that the function that relates the conserved variables and the physically observed 
concentrations of the components in the mixture is one to one and it admits a global 
inverse, which cannot be given explicitly, but can be adequately computed.
As a result, fully conservative numerical schemes can be designed for the ED model in 
chromatography. We propose a Weighted-Essentially-non-Oscillatory second order IMEX 
scheme and describe the numerical issues involved in its application. Through a series 
of numerical experiments, we show that our scheme gives accurate numerical solutions 
which capture the sharp discontinuities present in the chromatographic fronts, with the 
same stability restrictions as in the purely hyperbolic case.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Chromatography is a powerful tool for the separation of complex mixtures. In liquid batch chromatography, a pulse of 
fluid mixture (the solute) is injected at one end of a long cylindrical column filled with a porous medium (the stationary 
phase), followed by a continuous flow of liquid (the mobile phase) along the column. The solute interacts with the porous 
medium and is distributed between the liquid and solid phases, and the components of the mixture begin to separate 
according to the strength of their interaction with the stationary phase. For a sufficiently long column, band profiles of 
single component-concentration travel along the column and it is possible to collect pure fractions of components at the 
outlet of the device. These tools are used for difficult separation tasks when a high purity of the product is demanded, as it 
is often the case in the pharmaceutical industry.

It has been long recognized that chromatographic processes can be modeled by considering non-linear, convection-
dominated partial differential equations [20,14], coupled with some algebraic relations between the concentrations of the 
components of the mixture in the mobile and solid phases. Under reasonable assumptions, such as negligible dispersion ef-
fects and transport resistances, these equations become systems of first order non-linear conservation laws. Understanding 
the mathematical theory of these systems can enlighten many of the engineering aspects [20], in particular the formation 
and evolution of shock waves, which are an essential ingredient in the formation of band profiles of pure components. In 
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addition, and since analytical solutions can only be obtained in very simple situations, it is important to develop tools that 
are able to perform accurate numerical simulations using these models. As observed in [22], robust and reliable numerical 
techniques can help practitioners to reduce the need for costly trial-and-error empirical experimentation.

In this paper we concentrate on the equilibrium-dispersive (ED henceforth) model. This is an ideal model based on the 
following assumptions (see e.g. [15,14])

1. There is a permanent equilibrium between the solid and mobile phases at all positions in the column.
2. The compressibility of the mobile phase is negligible and there is no interaction between the solvent (carrier) and the 

solid phase.
3. The porous medium in the column is homogeneous. Then, the adsorption process is uniform in time and axial direction.
4. There are no radial concentration gradients in the column.
5. Only axial dispersion causes band broadening. The column efficiency is characterized by an apparent axial dispersion 

coefficient Da > 0, related to the height of the column, L, the (constant) velocity of the mobile phase, u, and the number 
of theoretical plates Nt , see [14], through the following relation

Da = Lu

2Nt
.

6. Any additional factor that could influence the adsorption behavior (such as the temperature) is neglected.

The mass balance equation of the ED model involves the concentrations of the N components of the mixture in the 
mobile phase, c = (c1, . . . , cN)T , and the solid phase, q = (q1, . . . , qN)T , and takes the following form

∂c

∂t
+ 1 − ε

ε

∂q

∂t
+ u

∂c

∂z
= Da

∂2c

∂2z
(1)

where ε is the total porosity of the solid phase, 0 < ε ≤ 1, t is the time and z the axial coordinate along the column, that 
is normalized to have unit height so that the top is at z = 0 and the bottom at z = 1. Under the assumptions listed above, 
the equilibrium relationship between the solid phase and liquid phase concentrations is given by the adsorption isotherm
q = q(c), which is usually a non-linear function [14]. Appropriate boundary conditions for this model are proposed in [14]:

uc − Da
∂c

∂z

∣∣∣∣
z=0

= uc inj(t),
∂c

∂z

∣∣∣∣
z=1

= 0, (2)

for a known function cinj(t).
The form of the adsorption isotherm determines the mathematical structure of the solutions to the ED model. When 

dispersion is negligible, the model equations (1) and the algebraic relation q = q(c) form a system of nonlinear, first order 
partial differential equations. The mathematical structure of the model for N = 1, i.e. single-component chromatographic 
elution, has been described in [20] for various types of adsorption isotherms.

In this paper we consider multi-component mixtures for which the adsorption isotherms are of Langmuir type, that is

qi = aici

1 +∑N
i=1 bici

, i = 1,2, . . . , N, (3)

where ai > 0 are the Henry coefficients, and the coefficients bi > 0 quantify the nonlinearity of the isotherm. For N = 1
and Da = 0, the analysis of the resulting hyperbolic conservation law carried out in [20] shows that the solutions are 
characterized by continuous or discontinuous composition fronts that propagate along the separation unit. For 0 < Da � 1, 
(1) becomes a parabolic, convection-dominated PDE whose solutions may display very sharp fronts. The mathematical theory 
for the multi-component case seems to be much less developed.

Numerical simulations involving the nonlinear system (1) require efficient numerical techniques that can accurately 
describe discontinuous fronts. As reported by various authors (see e.g., [15] and references therein), finite element (FE) 
methods, normally used for diffusion dominated problems, often lead to numerical oscillations in convection-dominated 
problems whose solutions display sharp gradients, and it is also well known that spurious numerical oscillations are also 
observed when classical finite difference schemes (FD) are used for such problems.

In [15], the ED model (1)–(3) is rewritten as

∂ w

∂t
+ ∂(uc)

∂z
= Da

∂2c

∂2z
, w = W (c) = c + 1 − ε

ε
q(c) (4)

and the authors propose to use a conservative discretization of the convective terms, ∂z(uc), combined with a standard 
centered discretization of the parabolic terms, in a finite volume (FV) framework. This numerical technique relies on the 
understanding that there is a one to one correspondence between the variables w and the concentrations c , so that (4)
becomes a system of conservation laws when Da = 0. Then, a conservative discretization of the convective terms guarantees 
mass conservation for the conserved variables, w , and, as a consequence, the shock-capturing property, i.e. shocks (for Da = 0) 
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