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We consider singularly perturbed boundary value problems with a simple interior turning 
point whose solutions exhibit an interior layer. These problems are discretised using higher 
order finite elements on layer-adapted piecewise equidistant meshes proposed by Sun and 
Stynes. We also study the streamline-diffusion finite element method (SDFEM) for such 
problems. For these methods error estimates uniform with respect to ε are proven in 
the energy norm and in the stronger SDFEM-norm, respectively. Numerical experiments 
confirm the theoretical findings.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider singularly perturbed boundary value problems of the form

−εu′′(x) + a(x)u′(x) + c(x)u(x) = f (x) in (−1,1),

u(−1) = ν−1, u(1) = ν1,
(1.1a)

with a small parameter 0 < ε � 1 and sufficiently smooth data a, c, f satisfying

a(x) = −(x − x0)b(x), b(x) > 0, c(x) ≥ 0, c(x0) > 0 (1.1b)

for a point x0 ∈ (−1, 1). The simple zero x0 of a is an attractive simple turning point of the problem. Thus, the solution 
of (1.1) exhibits an interior layer of “cusp”-type [13] at x0.

In the literature (see e.g. [4], [7, p. 95], [13, Lemma 2.3]) bounds for such interior layers are well known. We have∣∣∣u(i)(x)
∣∣∣ ≤ C

(
1 +

(
ε1/2 + |x − x0|

)λ−i
)

(1.2)

where the parameter λ satisfies 0 < λ < λ̄ := c(x0)/|a′(x0)|. Note that the estimate also holds for λ = λ̄, if λ̄ is not an integer. 
Otherwise there is an additional logarithmic factor, see references above. In the following we assume x0 = 0 for convenience.
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The quest for uniform error estimates for singularly perturbed problems has concerned researchers for many years. One 
of the common strategies is the use of layer-adapted meshes to treat the occurring boundary and interior layers. In partic-
ular, meshes for layers of exponential type have been examined, see e.g. [6] where various problems, numerical methods, 
and meshes are presented. Popular examples are, due to their simplicity, the piecewise equidistant Shishkin meshes [11,9]
which are fine only in the layer region. Unfortunately, the layers of “cusp”-type (1.2) do not fade away that quickly and, 
thus, local refinements do not suffice to capture the layer. Therefore, Sun and Stynes [13, Section 5.1] generalise the standard 
Shishkin approach and propose a mesh consisting of O(ln N) equidistant parts to analyse linear finite elements. Moreover, 
in [7] Liseikin uses graded meshes adapted to (1.2) to prove the ε-uniform first order convergence of an upwind scheme in 
the discrete maximum norm.

For problems of the form (1.1) the finite element method is analysed in [1] on the graded meshes of Liseikin. Using 
related techniques we shall extend the results of Sun and Stynes [13] by studying finite elements of order k ≥ 1 on piecewise 
uniform meshes with slightly modified parameters, see Section 3. In particular, we prove ε-uniform error estimates of the 
form 

(
N−1 ln N

)k
in a weighted energy norm.

In numerical experiments non-physical oscillations in the error can be observed. In order to damp such behaviour various 
stabilisation techniques have been proposed in recent years. We shall study the streamline-diffusion finite element method 
(SDFEM) first introduced by Hughes and Brooks [5]. In Section 4 we prove an error estimate in the SDFEM-norm. Moreover, 
for linear elements a supercloseness result is given which allows to improve the bound for the L2-norm error. As an example 
for the analysis in the context of Shishkin meshes we may refer to Stynes and Tobiska [12] who studied a two-dimensional 
convection-diffusion problem with exponential boundary layers for Q p -elements.

Some numerical results are given to illustrate the theoretical findings in Section 5.
Notation: In this paper let C denote a generic constant independent of ε and the number of mesh points. Furthermore, 

for an interval I we use the usual Sobolev spaces H1(I), H1
0(I), W k,∞(I), and L2(I). The space of continuous functions on I

is written as C(I). We denote by (·, ·)I the usual L2(I) inner product and by ‖·‖I the L2(I)-norm. Moreover, the supremum 
norm on I is written as ‖·‖∞,I and the seminorm in H1(I) as |·|1,I . If I = (−1, 1), the index I in inner products, norms, and 
seminorms will be omitted. Further notation will be introduced later at the beginning of the sections where it is needed.

2. FEM-analysis on arbitrary meshes

The following section is based on the paper of Sun and Stynes [13]. While their approach merely allows the analysis of 
linear finite elements, the subsequent results enable the analysis of finite elements of higher order. We will only consider 
homogeneous Dirichlet boundary conditions ν−1 = ν1 = 0. This is no restriction since it can be easily ensured by modifying 
the right-hand side f . Without loss of generality (cf. [13, Lemma 2.1]) we may assume that(

c − 1
2 a′) (x) ≥ γ > 0, for all x ∈ [−1,1], ε sufficiently small. (2.1)

For v, w ∈ H1
0((−1, 1)) we set

Bε(v, w) := (
εv ′, w ′)+ (

av ′, w
) + (cv, w).

Thanks to (2.1) the bilinear form Bε(·, ·) is uniformly coercive over H1
0((−1, 1)) × H1

0((−1, 1)) in terms of the weighted 
energy norm |||·|||ε defined by

|||v|||ε :=
(
ε |v|21 + ‖v‖2

)1/2
.

The weak formulation of (1.1) with ν−1 = ν1 = 0 reads as follows:

Find u ∈ H1
0((−1, 1)) such that

Bε(u, v) = ( f , v) , for all v ∈ H1
0((−1,1)). (2.2)

Let −1 = x−N < . . . < xi < . . . < xN = 1 define an arbitrary mesh on the interval [−1, 1]. The mesh interval lengths are 
given by hi := xi − xi−1. For k ≥ 1 we denote by Pk((xa, xb)) the space of polynomial functions of maximal order k over 
(xa, xb). Furthermore, we define the trial and test space V N by

V N := {
v ∈ C([−1,1]) : v|(xi−1,xi) ∈ Pk((xi−1, xi))∀i, v(−1) = v(1) = 0

}
.

The discrete problem is given by:

Find uN ∈ V N such that

Bε(uN , v N) = ( f , v N) , for all v N ∈ V N . (2.3)

Let uI denote the standard Lagrangian interpolation into V N , using the mesh points and k − 1 (arbitrary) inner interpo-
lation points per interval. For example uniform or Gauß–Lobatto points could be chosen.
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