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In this paper, we define a new set of functions called fractional-order Bernoulli functions 
(FBFs) to obtain the numerical solution of linear and nonlinear fractional integro-
differential equations. The properties of these functions are employed to construct the 
operational matrix of the fractional integration. By using this matrix and the least square 
approximation method the fractional integro-differential equations are reduced to systems 
of algebraic equations which are solved through the Newton’s iterative method. The 
convergence of the method is extensively discussed and finally, some numerical examples 
are shown to illustrate the efficiency and accuracy of the method.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The idea of fractional derivative dates back to a conversation between two mathematicians: Leibniz and L’Hopital. In 
1695, they exchanged about the meaning of a derivative of order 1

2 . Their correspondence has been well documented and 
is stated as the foundation of fractional calculus [26].

The modeling of many real-life physical systems leads to a set of fractional differential equations. Also, fractional order 
dynamics appear in various physical processes such as, electromagnetic, viscoelasticity [3], waves control theory, bioengi-
neering [20], dynamics of interfaces between nanoparticles and substrates [9], robotics and edge detection and etc. Since 
most of fractional differential equations do not have exact analytic solution, therefore, many authors have worked on nu-
merical methods for solution of this kind of equations. In recent years, many numerical methods have emerged, such as 
eigenvector expansion [42], homotopy perturbation method [1], variational iteration method [25], differential transform 
method [12], Adomian decomposition method [11], finite difference method [41], Laplace transforms method [27], Tau 
method [36,38], collocation method [35,34], wavelet method [30], fractional-order wavelets [28,31] and so on.

There are three classes of orthogonal functions which are widely used. The first class includes sets of piecewise constant 
functions (e.g., block-pulse, Haar and Walsh). The second class consists of sets of orthogonal polynomials (e.g., Chebyshev, 
Legendre and Laguerre) [37]. The third class is the set of sine-cosine functions in the Fourier series. Orthogonal functions 
have been used in dealing with different problems of the dynamical systems. The main advantage of using orthogonal 

* Corresponding author.
E-mail address: ordokhani@alzahra.ac.ir (Y. Ordokhani).

http://dx.doi.org/10.1016/j.apnum.2017.08.002
0168-9274/© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:ordokhani@alzahra.ac.ir
http://dx.doi.org/10.1016/j.apnum.2017.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2017.08.002&domain=pdf


P. Rahimkhani et al. / Applied Numerical Mathematics 122 (2017) 66–81 67

functions is that they reduce the dynamical system problems to those of solving a system of algebraic equations by using the 
operational matrices of integration or differentiation, thus greatly simplifying the problems. These matrices can be uniquely 
determined based on the particular orthogonal functions. Special attention has been given to applications of the Walsh 
function [8], block pulse function [21], Laguerre series [15], Haar function [6], piecewise constant orthogonal functions [39], 
shifted Legendre polynomials [5], shifted Chebyshev polynomials [40], Legendre wavelet [32] and semi-orthogonal wavelets. 
The Bernoulli polynomials [17] and Taylor series [22] are not based on orthogonal functions. Nevertheless, they possess 
the operational matrix of integration. However, since the integration of the cross product of two Taylor series is given in 
terms of a Hilbert matrix [33], which are known to be ill conditioned, the applications of Taylor series are limited. For 
approximating an arbitrary time function the advantages of Bernoulli polynomials, over shifted Legendre polynomials on 
the interval [0, 1], are given in [23].

Recently, in [16], Kazem et al. defined the new orthogonal functions based on the Legendre polynomials to obtain 
an efficient spectral technique for solving fractional differential equations (FDEs). The paper [44] extended this definition 
and presented the operational matrix of fractional derivative and integration for such functions to construct a new Tau 
technique for solving fractional partial differential equations (FPDEs). The authors [4] proposed the fractional-order gen-
eralized Laguerre functions based on the generalized Laguerre polynomials. They used these functions to find numerical 
solution of systems of fractional differential equations. Yuzbasi [45], presented a collocation method based on the Bern-
stein polynomials for the fractional Riccati type differential equations, by replacing t → tα in the truncated Bernstein series. 
Moreover, the authors of [7] expanded fractional Legendre functions to interval [0,h] and to acquire numerical solution of 
FPDEs.

So, the objective of this paper is to define the new fractional-order functions based on the Bernoulli polynomials for 
solving the fractional Fredholem–Volterra integro-differential equations. This method is accurate and easy to implement in 
solving FDEs.

In this work, firstly fractional derivative of the unknown function Dν y(x) and y(x) in the underlying fractional integro-
differential equation are approximated by finite linear combinations of the fractional-order Bernoulli functions (FBFs). Then, 
we obtain the FBFs operational matrix of fractional integration. Finally, the problem is converted to a system of algebraic 
equations by using the FBFs operational matrix together with the least square approximation method. Therefore, there are 
some questions to be answered:

(i) How to derive FBFs operational matrices of the fractional integration and derivative.
(ii) How to analyze the fractional Fredholem–Volterra integro-differential equations via FBFs operational matrix of the 

fractional integration with the least square approximation method.
(iii) How to select value of fractional order (α) of new functions for different problems.
The outline of this article is as follows. In section 2, we introduce some basic definitions and mathematical preliminaries 

of the fractional calculus theory. In section 3, the fractional-order Bernoulli functions and their properties are obtained. 
Section 4, is devoted to construct the FBFs operational matrices of fractional integration and derivative. In section 5, the 
numerical scheme for solving the fractional Fredholem–Volterra integro-differential equations is expressed. In section 6, we 
discuss on the convergence of the method presented in section 5. Finally, in section 7, we report our numerical results and 
demonstrate the accuracy of the proposed method by considering five numerical examples. Section 8 consists of a brief 
summary.

2. Preliminaries and notations

In this section, we give some necessary definitions and mathematical preliminaries of the fractional calculus theory that 
will be used in this paper. There are different definitions of fractional integrations and derivatives. The widely used definition 
of a fractional integration is the Riemann–Liouville definition and of a fractional derivative is the Caputo definition.

Definition 1. The Riemann–Liouville fractional integral operator of order ν is defined as [29]

Iν y(t) =
{

1
�(ν)

∫ t
0

y(s)
(t−s)1−ν ds, ν > 0, t > 0,

y(t), ν = 0.
(1)

For the Riemann–Liouville fractional integral we have [45,29]

1. Iν(λ1 y(t) + λ2u(t)) = λ1 Iν y(t) + λ2 Iνu(t),
2. Iν1 Iν2 y(t) = Iν1+ν2 y(t),
3. Iν1 Iν2 y(t) = Iν2 Iν1 y(t),
4. Iνtβ = �(β+1)

�(β+ν+1)
tν+β, β > −1,

where λ1 and λ2 are constants.
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