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We present a systematic approach to the construction of starting procedures for general 
linear methods (GLMs) of order p and stage order q = p. Order conditions for starting 
procedures based on the generalized Runge–Kutta (RK) are derived using the theory of 
rooted trees, elementary differentials, and elementary weights, and examples of generalized 
RK formulas are given up to the order p = 4.
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1. Introduction

Consider the initial-value problem for systems of ordinary differential equations (ODEs){
y′(t) = f

(
y(t)

)
, t ∈ [t0, T ],

y(t0) = y0 ∈R
m,

(1.1)

where the function f :Rm →R
m is sufficiently smooth. For the numerical solution of this problem we consider a large class 

of GLMs introduced by Burrage and Butcher [1] and further investigated in [2–5,12,13,6–10,16,20,21]. On the uniform grid 
{tn}N

n=0,

tn = t0 + nh, n = 0,1, . . . , N, Nh = T − t0,

these methods are defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Y [n]

i = h
s∑

j=1

aij f
(
Y [n]

j

) +
r∑

j=1

uij y[n−1]
j , i = 1,2, . . . , s,

y[n]
i = h

s∑
j=1

bij f
(
Y [n]

j

) +
r∑

j=1

vij y[n−1]
j , i = 1,2, . . . , r,

(1.2)
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n = 1, 2, . . . , N . Here, the internal approximations or stages Y [n]
i satisfy

Y [n]
i = y(tn−1 + cih) + O (hq+1), i = 1,2, . . . , s, (1.3)

and the external approximations y[n]
i , which propagate from step to step, satisfy

y[n]
i =

p∑
k=0

qikhk y(k)(tn) + O (hp+1), i = 1,2, . . . , r, (1.4)

for some real parameters qik , i = 1, 2, . . . , r, k = 0, 1, . . . , p. Put

qk =
[

q1,k q2,k · · · qr,k

]T ∈ R
r, k = 0,1, . . . , p.

The GLMs (1.2) are characterized by the abscissa vector c = [c1, . . . , cs]T ∈R
s , the coefficient matrices

A = [aij] ∈ R
s×s, U = [uij] ∈ R

s×r, B = [bij] ∈ R
r×s, V = [vij] ∈ R

r×r,

the vectors qk , k = 0, 1, . . . , p, appearing in (1.4), and four integers: the order of the method p, the stage order q, the 
number of external approximations r, and the number of internal approximations or stages s.

Introducing the notation

Y [n] =

⎡⎢⎢⎣
Y [n]

1
...

Y [n]
s

⎤⎥⎥⎦ , f
(
Y [n]) =

⎡⎢⎢⎣
f
(
Y [n]

1

)
...

f
(
Y [n]

s
)
⎤⎥⎥⎦ , y[n] =

⎡⎢⎢⎣
y[n]

1
...

y[n]
r

⎤⎥⎥⎦ ,

the GLM (1.2) can be written in a more compact vector form⎧⎨⎩ Y [n] = h(A ⊗ I) f
(
Y [n]) + (U ⊗ I)y[n−1],

y[n] = h(B ⊗ I) f
(
Y [n]) + (V ⊗ I)y[n−1],

(1.5)

n = 1, 2, . . . , N , where I is the identity matrix of dimension m, and the relations (1.3) and (1.4) can be rewritten as

Y [n] = y(tn−1 + ch) + O (hq+1), (1.6)

y[n] =
p∑

k=0

(qk ⊗ I)hk y(k)(tn) + O (hp+1). (1.7)

Here, y(tn−1 + ch) is defined by

y(tn−1 + ch) =

⎡⎢⎢⎣
y(tn−1 + c1h)

...

y(tn−1 + csh)

⎤⎥⎥⎦ ∈R
sm.

In what follows we will be interested in GLMs (1.5) which have order p and stage order q = p with respect to the starting 
procedure

y[0] =
p∑

k=0

(qk ⊗ I)hk y(k)(t0) + O (hp+1). (1.8)

It was proved by Butcher [3] (see also [21]) that this is a case if and only if

ecz = zAecz + Uw(z) + O (zp+1), (1.9)

and

ezw(z) = zBecz + Vw(z) + O (zp+1), (1.10)

where

w(z) := s
p∑

k=0

qkzk, ecz :=
[

ec1 z ec2 z · · · ecs z
]T

.
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