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The recently developed globally convergent numerical method for an inverse medium 
problem with the data resulting from a single measurement, proposed in [23], is tested 
on experimental data. The data were originally collected in the time domain, whereas 
the method works in the frequency domain with the multi-frequency data. Due to a 
significant amount of noise in the measured data, a straightforward application of the 
Fourier transform to these data does not work. Hence, we develop a heuristic data 
preprocessing procedure, which is described in the paper. The preprocessed data are used 
as the input for the inversion algorithm. Numerical results demonstrate a good accuracy of 
the reconstruction of both refractive indices and locations of targets.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this work we consider an inverse medium problem for the Helmholtz equation in the three dimensional space R3. 
The objective is to reconstruct the coefficient of the Helmholtz equation in a bounded domain. The coefficient represents 
the spatially distributed dielectric constant of the medium. Our target application is in the detection and identification 
of explosives, such as antipersonnel mines and improvised explosive devices (IEDs). We calculate dielectric constants and 
estimate locations of objects which mimic explosives. Motivated by our target application, we use in our experiments only 
a single location of the source and, therefore, we use only a single resulting boundary measurement of the backscattered 
wave. Thus, this is the case of a single measurement data, which is one of the most challenging cases for any inversion 
algorithm.

The radar community relies mainly on the intensity of the radar images, which are obtained by migration-type imaging 
methods, to obtain geometrical information such as the shapes, the sizes, and the locations of the targets, see, e.g., [24,32,
13]. Hence, the additional information about values of dielectric constants of targets of interest might help in the future 
to develop classification algorithms, which would better differentiate between explosives and clutter [24]. The targets in 
our experiments are located in air. It is known that, for example IEDs can be located in air. On the other hand, the case 
of targets buried in the ground is one of goals of our future research. We also note that this case was studied in [34]
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for experimental time dependent data using the previously developed globally convergent inverse algorithm of [6,7]. The 
algorithm of [6,7] works with the Laplace transform with respect to time of the solution to the hyperbolic equation (7), 
whereas the Helmholtz equation (2) we work with is the Fourier transform of the solution to that equation. In fact, the 
algorithm of [6,7] is similar with the one of both [23] and this paper; formulations of global convergence results are also 
similar.

Another term for the inverse medium problem under consideration is Coefficient Inverse Problem (CIP). Recently a glob-
ally convergent numerical method for this CIP with multi-frequency data resulting from a single measurement event has 
been developed by this group in [23]. This method was tested on computationally simulated data in [23] and on experimen-
tal multi-frequency data in [29]. The reason why we test this method on time dependent data is that testing of an inversion 
algorithm on several types of experimental data is a good idea, since it provides better assurances of the performance of 
this algorithm. Thus, the goal of the current paper is to test the technique of [23] on time dependent experimental data. The 
data of this paper were collected on a microwave scattering facility in the University of North Carolina at Charlotte. They 
were used in [8,33] to test a different globally convergent inverse algorithm of [6,7], which works with time dependent 
data.

It seems to be at the first glance that the easiest way to apply the frequency domain globally convergent algorithm of 
[23] to the time domain data is to apply the Fourier transform to the data and then to use the resulting data as the input 
for the algorithm. However, the straightforward application of this idea does not work here. The latter is due to a significant 
amount of noise in the measured data, see section 4.2.1. Such noise was observed earlier for both the time dependent 
[34,6,8,33] and multi-frequency [29] experimental data. We remark here that conventional data denoising techniques do 
not work for our data because of its complicated structure, see section 4.2.1. Therefore, it was concluded in [24,34,29,8,33]
that a heuristic data preprocessing procedure is necessary to reduce the noise in the measured data. The data preprocessing 
procedure of the current paper is described in section 4. The result of this procedure is used as the input for the algorithm 
of [23].

The first step of the globally convergent numerical method of [34,6–8,33] is the application of the Laplace transform with 
respect to time to the solution of a hyperbolic wave-like PDE. However, it was observed in [29] that this technique does 
not work for the multi-frequency experimental data of [29]. The reason of this is that these data are stable only on a small 
interval of frequencies concentrated around a certain “optimal” frequency. A similar observation is made in section 4.2.7
for the Fourier transform of our preprocessed time dependent data. We remark that this phenomenon is not observed 
in computationally simulated data. In other words, when working with our data, one can rely only on a small interval 
of frequencies. We note that the latter is one of conditions of the global convergence theorem of [23]. The integral of 
the inverse Fourier transform, which is carried out over only that small interval of frequencies, cannot provide a reasonable 
accuracy of resulting time dependent data, and, therefore, it cannot provide a reasonable accuracy for the subsequent Laplace 
transform of the latter data.

The numerical methods of [6,7] and [23] are the so-called “approximately globally convergent methods”. A detailed dis-
cussion of the notion of the approximate global convergence can be found in [6,7]. We now explain this notion briefly. Our 
CIP is a highly nonlinear one. For those CIPs which are highly nonlinear problems, an important question in its numerical 
treatment is: How to obtain at least one point in a sufficiently small neighborhood of the exact solution without any advanced knowl-
edge of this neighborhood? A numerical method for a CIP is called “approximately globally convergent” (globally convergent in 
short, or GCM) if a theorem is proved, which claims that, under a certain reasonable mathematical assumption, this method 
addresses the above question positively, i.e. it delivers that point. We call this theorem the “global convergence theorem”. 
The estimate of the distance between that point and the true coefficient should depend on the error in the data and some 
parameters of the discretization. We point out that the proximity of that point to the true coefficient is the main advantage 
of the GCM. Indeed, as soon as such a point is found, the solution can be refined via a small perturbation approach, see, 
e.g. Chapters 4 and 5 of [6]. That notion of a reasonable mathematical assumption is well justified by the well known fact 
that the goal of the development of such numerical methods for CIPs, which would positively address the above question, 
is a tremendously challenging one, especially for the case of a single measurement data. We refer to [6,7] for detailed 
discussions of the notion of the approximate global convergence.

We note that there is a vast literature on reconstruction methods developed for solving CIPs. To study the CIP under 
consideration, in which weak scattering assumptions are not applicable, the probably best known approach is nonlinear 
optimization, see, e.g., [12,15] and references therein. However, it is well-known that the methods based on nonlinear 
optimization schemes heavily rely on a strong a priori knowledge about the target. In particular, the convergence of those 
methods requires a good a priori initial approximation of the exact solution, that is, the starting point of iterations should 
be chosen to be sufficiently close to the solution. Hence, we call such methods “locally convergent”. Note that in our 
desired applications such a priori knowledge is not always available. Concerning qualitative reconstruction methods for 
inverse scattering problems, we refer to [4,3,11,20,17,26–28] and the references therein. These methods do not require good 
first guesses. However, they reconstruct only the shapes of scattering objects instead of their material properties.

Finally, we refer to some different globally convergent numerical methods for solving CIPs with multiple measurements 
of the Dirichlet-to-Neumann map [1,2,19,18,30]. These techniques were tested on computationally simulated data in [19,18]. 
We recall that our GCM in this paper deals with only a single backscatter measurement.

The paper is organized as follows. We present in section 2 the formulation of the direct and inverse problems considered 
in this paper. Section 3 is a brief summary of our GCM. The data collection and preprocessing are described in section 4. 
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