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Motivated by recent stability results on one-step methods, especially Runge–Kutta methods, 
for the generalized pantograph equation (GPE), in this paper we study the stability of 
one-leg multistep methods for these equations since the one-leg methods have less 
computational cost than Runge–Kutta methods. To do this, a new stability concept, 
Gq(q̄)-stability defined for variable stepsizes one-leg methods with the stepsize ratio 
q which is an extension of G-stability defined for constant stepsizes one-leg methods, 
is introduced. The Lyapunov functional of linear system is obtained and numerically 
approximated. It is proved that a Gq(q̄)-stable fully-geometric mesh one-leg method 
can preserve the decay property of the Lyapunov functional for any q ∈ [1, ̄q]. The 
asymptotic contractivity, a new stability concept at vanishing initial interval, is introduced 
for investigating the effect of the initial interval approximation on the stability of numerical 
solutions. This property and the bounded stability of Gq(q̄)-stable one-leg methods for 
linear and nonlinear problems are analyzed. A numerical example which further illustrates 
our theoretical results is provided.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We are interested in stability properties of fully-geometric mesh (FGM) one-leg methods (OLMs) for the numerical 
solution of the initial-value problems for neutral functional differential equation with proportional delay, the so-called gen-
eralized pantograph equation (GPE), which is an equation of the form{

y′(t) = f (t, y(t), y(λt), y′(λt)), t ∈ J T := [0, T ],
y(0) = φ,

(1.1)

where T > 0 is a real constant, λ ∈ (0, 1), φ ∈ Cd and f : [0, +∞) × Cd × Cd × Cd → ×Cd is a given mapping. Note that this 
equation includes as an important special case the non-neutral pantograph equation{

y′(t) = f (t, y(t), y(λt)), t ∈ J T ,

y(0) = φ.
(1.2)
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The equations of the form (1.1) are found in a wide range of applications; see, e.g., [26,30] and [13], and the references 
therein. Since their analysis is often difficult, it is very important to study their numerical approximations in order to ex-
plore their solutions. In recent years, the numerical solution of (1.1) has been extensively investigated and many interesting 
results have been reported (see, e.g., [8–10,31,27,2,29,18,22,45,48,23,49,38,34,47,39,24,40,42,3,33]). For the recent mono-
graph relevant to the numerical solution of GPE, we refer the reader to [5] and [6]. These results are mainly involved in 
three different discretization approaches, the approach to directly discretizing it on a uniform mesh (UMD, see, e.g., [8–10,
27]), the approach to transforming it into neutral equation with constant delay (TRA, see, e.g., [31,29,22,45,48,39,24,40]), 
which was suggested by Jackiewicz [28], and the approach to directly discretizing it on a geometric mesh (GMD, see, e.g., 
[2,18,23,49,38,34,39,41]).

Our aim in this paper is to look for FGM OLMs with stability properties. More specifically, we seek OLMs which produce 
bounded solution when applied to linear and nonlinear GPE using a geometric step size sequence. It has come to our 
attention that many researchers mainly considered the one-step methods, especially Runge–Kutta methods, for solving GPE. 
Since the multistep methods have generally less computational cost than Runge–Kutta methods, some authors (see Zhang 
and Sun [45], Huang and Gan [22] and Huang [24]) considered transforming (1.1) into neutral delay differential equation 
with constant delay and discretizing the equation by multistep methods. But, to the best of our knowledge, no work has 
been carried out on the direct discretization of GPE by multistep methods on a geometric mesh. Although in an abstract 
sense the approach to TRA and the approach to GMD may be considered to be essentially same [29], there is real difference 
between them in numerically computing [39]. It is well known that the second order backward differentiation formula 
(BDF) with constant step size is stable for stiff ODEs. However, its variable step sizes counterpart may be unstable even 
for nonstiff variable-coefficient ODEs (see, e.g. [36,16,15,20]). Consequently, although Huang and Gan [22], and Huang [24]
obtained the asymptotic stability results of general linear methods, including OLMs, connecting with the approach to TRA 
for GPE, it is not clear whether the variable step sizes counterparts of these methods are stable for GPE on an FGM. Hence, 
it is interesting and necessary to study the stability of OLMs for neutral equation on an FGM.

We also noticed that the papers [22,24] considered only the asymptotic properties of numerical solution to GPE (1.1) on 
infinite intervals. Our major concern in this paper is the bounded stability and little attention is paid on the asymptotic 
stability which implies the stepsize sequence will approach to infinity when an FGM is used, since from a viewpoint of 
practical computation it is desirable to give more precise information on the behavior of each solution including that when 
the stepsizes are not so large. Not only that, we study the asymptotic behavior of the numerical solutions at vanishing initial 
interval and the minimal stepsize. This useful asymptotic property will be called asymptotic contractivity. We will provide 
some asymptotic results on FGM OLMs for linear and nonlinear GPEs, including ODEs and non-neutral pantograph equations 
as special cases.

Historically, the variable mesh, including fully-geometric mesh, OLMs, especially variable mesh BDFs, have been exten-
sively applied to various problems (see, e.g., [1,12]), and the stability of variable mesh OLMs for these problems has been 
thoroughly investigated (see, e.g., [37,15,17,20]). In these classical papers, some important results have been reported, for 
example, some OLMs are stable for certain stable variable-coefficient problems with constant stepsize but unstable with 
variable-steps (see, e.g., [37,15]). In this paper we will investigate the stability properties of FGM OLMs for GPE.

To accomplish this we have to review the FGM OLMs and establish preliminary results in Section 2. In this section, 
a new stability concept, Gq(q̄)-stability, is introduced and will play important role in the following numerical stability 
analysis. We also introduce another stability concept, asymptotic contractivity, in this section. In Section 3 we consider the 
stability of FGM OLMs for solving linear systems, and obtain a Lyapunov functional and its numerical approximation. We 
extend the study to nonlinear problems and obtain a few results on both asymptotic contractivity and bounded stability 
in Section 4. Numerical experiments which confirm our theoretical results are given in Section 5. Finally, we give some 
concluding remarks in Section 6.

2. FGM OLMs: Fully-geometric mesh one-leg methods

In this section, we will introduce the fully-geometric mesh one-leg methods and apply them to generalized pantograph 
equation (1.1).

2.1. Geometric mesh

For given N ∈ N, let JN : {0 = t0 < t1 < · · · < tn < · · · < tN = T } denote a mesh for the given interval J T . A mesh JN in J T

is called geometric with N steps (tn−1, tn), n = 1, 2, · · · , N, and grading factor r ∈ (0, 1), if

t0 = 0, tn = rN−n T , 1 ≤ n ≤ N.

For such a geometric mesh, it is easy to derive that hn+1 = r−1hn = qhn, n ≥ 2, when the stepsizes hn are defined by 
hn := tn − tn−1 (n ≥ 1). This kind of mesh has been widely used in numerically solving some practice problems such as the 
differential equations with proportional delay (see, e.g., [2,18,23,49,38,34,39,41]), the integral equations with proportional 
delay (see, e.g., [21,7]), and problem where singularities may arise at t = 0 (see, e.g., [43,35]).
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