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In this article we construct weak Runge–Kutta Munthe-Kaas methods for a finite-
dimensional version of the stochastic Landau–Lifshitz equation (LL-equation). We formulate 
a Lie group framework for the stochastic LL-equation and derive regularity conditions for 
the corresponding SDE system on the Lie algebra. Using this formulation we define weak 
Munthe-Kaas methods based on weak stochastic Runge–Kutta methods (SRK methods) and 
provide sufficient conditions such that the Munthe-Kaas methods inherit the convergence 
order of the underlying SRK method. The constructed methods are fully explicit and 
preserve the norm constraint of the LL-equation exactly. Numerical simulations are 
provided to illustrate the convergence order as well as the long time behaviour of the 
proposed methods.

© 2017 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and general framework

Let (�, F , P) be a complete probability space together with a filtration Ft∈[0,T ] which satisfies the usual conditions. We 
consider a finite ensemble of N magnetic nanoparticles occupying a domain D ⊂ R

3. Let S2 denote the unit sphere of R3. 
The time evolution of the magnetisation

m(t) = (m1(t), . . . ,mN(t)) ,mi ∈ S
2

of the particles can be described by the finite-dimensional Landau–Lifshitz equation (see [4,9,26])

dmi(t) = −mi(t) × V i(m)dt + ηmi(t) × dW i(t) (1)

mi(0) = m0
i ∈ S

2, 1 ≤ i ≤ N.

Here, W = (W1, . . . , W N) is an Ft -adapted 3N-dimensional Wiener process representing thermal fluctuations acting on 
the magnetisation m; the strength of the fluctuations is scaled via the temperature dependent constant η ∈ R. To ensure 
the correct thermodynamical behaviour the stochastic integrals have to be interpreted in the Stratonovich sense (see the 
discussion in [9,26]). Note that we use dW i for denoting the Stratonovich integral in contrast to the more common notation 
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◦dW i to avoid confusion with the “◦” operators in our vector field notation later on. V = (V 1, . . . , V N) is a collection of 
smooth vectorfields V i : R3N →R

3, such that

V i(m) = ∇miE(m) − αmi × ∇miE(m). (2)

Here, α ∈ R
+ denotes a dimensionless damping parameter, ∇mi denotes the gradient with respect to mi and E : R3N → R

describes the free energy of the system. A typical model for E (as e.g. used in [2]) incorporating exchange energy, uniaxial 
anisotropy energy and exterior energy is given by

E(m) = A

2
〈 Jexchm,m〉

R3N︸ ︷︷ ︸
exchange

+ K

2

N∑
i=1

(
1 − 〈mi, eani〉2

R3

)
︸ ︷︷ ︸

anisotropy

−
N∑

i=1

〈mi,hext〉R3︸ ︷︷ ︸
exterior

, (3)

where Jexch ∈ R
3N×3N , symmetric, positive definite, hext, eani ∈R

3 and A, K ∈ R
+ .

An important qualitative property of Eq. (1) is that the modulus of mi is conserved over time, i.e.

‖mi(t)‖2
R3 = 1, ∀t ∈ [0, T ], 1 ≤ i ≤ N, P-a.s. (4)

Equivalently, we can say that the solution trajectories of Eq. (1) evolve P-a.s. on the N-times product of the unit sphere 
S

2⊗N := ⊗N
i=1 S

2. In fact, let TS2|y denote the tangent space of S2 at y ∈ S
2, then for all y ∈ S

2 the term y × z ∈ TS2|y for 
any vector z. As both drift and diffusion of Eq. (1) have this structure the solution m evolves on S2⊗N (see [17, Lemma 8.1]).

Computational micromagnetism (and in particular the Landau–Lifshitz equation) is an active field of research and plays 
an essential role in the development of magnetic materials used in e.g. magnetic storage technologies. Equation (1) has been 
treated extensively in the literature both from an analytical point of view (see [4,9,19,26]) as well as from a numerical point 
of view in the sense of mean-square approximations (see [1,2,20] and the references therein). In contrast to the pathwise 
perspective we focus here on the weak approximation of Eq. (1). In particular, we are interested in the time evolution of 
E[E(m(T ))] on large time horizons which corresponds to the average magnetisation relaxation of the magnetic ensemble.

Of course, any mean-square convergent method is also weak convergent with at least the same order of convergence 
and can be used for the approximation of E[E(m(T ))] (see e.g. the numerical experiments in [1,2]). Nevertheless, we want 
to emphasise that it is not necessarily a computationally efficient solution to use mean-square convergent methods. The 
classical way to approximate expectations is via Monte Carlo estimation; due to the nature of Monte Carlo estimation a 
large number of realisations is needed to keep the Monte Carlo error small. Thus, a computationally cheap weak convergent 
method can be preferable to a more expensive mean-square convergent method for Eq. (1). A perfect example for this is the 
linear implicit method proposed in [26] which is essentially a “less” implicit version of the mean-square convergent method 
proposed in the same article. To the best of our knowledge, this is the only method which is constructed as a weak method 
for Eq. (1) proposed in the literature.

A second aspect which makes weak convergent methods preferable is the order of convergence. In the mean-square case 
one has to simulate iterated Wiener integrals to obtain high convergence orders; however, the simulation of these integrals 
is a computationally demanding task (we refer to the discussion in [1, Section 4.3]). For weak convergent methods it suffices 
to approximate higher moments of iterated Wiener integrals and this can efficiently be achieved by using discrete random 
variables (see e.g. [21, Lemma 3.6] and the example in the Appendix). Following these considerations we propose that the 
weak convergent methods should combine the following desirable properties:

(i) The numerical method should be fast and accurate.
(ii) The numerical method should reproduce the qualitative properties of Eq. (1), i.e. the numerical trajectories should 

evolve on S2⊗N .

The first property is at least partially fulfilled in the class of stochastic Runge–Kutta methods (SRK methods). SRK methods 
are flexible and there exists a theory for order conditions (we refer to [5–8,14,21,28–30] and the references therein). In 
particular, it is possible to construct SRK methods of weak order two which have reasonable computational cost (see [29]). 
However, a direct application of SRK methods to Eq. (1) is difficult as the numerical trajectories of these methods typically 
do not stay on the manifold S2⊗N . This behaviour is highly problematic both from a physics point of view as well as from 
a numerical point of view:

• A weak approximation of the solution m of Eq. (1) is essentially an approximation of the distribution of m which is 
supported on S2⊗N . Approximating this distribution with a distribution supported on R3N assigns positive probability 
to states of the system which are impossible from a thermodynamical point of view.

• Even for small time steps the numerical trajectories of standard explicit SRK methods (e.g. the Heun method or mod-
ifications of the Euler–Maruyama method) do not only leave the manifold S2⊗N but rapidly explode on short time 
horizons (see the discussion in [20,3]). Note that there are SRK methods which automatically stay on S2⊗N and we will 
provide corresponding algebraic conditions on the entries of the Butcher tableau in the Appendix. These conditions are 
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