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We provide effective algorithms for solving block tridiagonal block Toeplitz systems 
with m × m quasiseparable blocks, as well as quadratic matrix equations with m × m
quasiseparable coefficients, based on cyclic reduction and on the technology of rank-
structured matrices. The algorithms rely on the exponential decay of the singular values 
of the off-diagonal submatrices generated by cyclic reduction. We provide a formal proof 
of this decay in the Markovian framework. The results of the numerical experiments that 
we report confirm a significant speed up over the general algorithms, already starting with 
the moderately small size m ≈ 102.
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1. Introduction

Cyclic reduction (CR) is an effective tool that can be used for solving several problems in linear algebra and in polynomial 
computations [4]. It has been originally introduced by G.H. Golub and R.W. Hockney in the mid 1960s [14,8], for the 
numerical solution of block tridiagonal linear systems stemming from the finite differences solution of elliptic problems, and 
has been generalized to solve nonlinear matrix equations associated with matrix power series with applications to queuing 
problems, Markov chains and spectral decomposition of polynomials. In fact, an important application of CR concerns the 
computation of the minimal nonnegative solution of the matrix equation X = A−1 + A0 X + A1 X2, encountered in Quasi 
Birth–Death (QBD) Markov chains, where A−1, A0, and A1 are given m × m nonnegative matrices such that A−1 + A0 + A1
is irreducible and stochastic and where X is the matrix unknown [2,4]. The computation of the solution X allows to recover 
the steady state vector π of the Markov chain.

Rewriting the matrix equation as A−1 + (A0 − I)X + A1 X2 = 0, CR computes four sequences of matrices, A(h)
i , i = −1, 0, 1

and Â(h)
0 , according to the following equations
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Fig. 1. Log-scale plot of the largest singular values of the largest south-western submatrix of A0 contained in the lower triangular part, for m = 1600. The 
horizontal line denotes the machine precision threshold. Matrices are randomly generated so that Ai � 0 are tridiagonal matrices and A−1 + A0 + A1 is 
stochastic. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

for h = 0, 1, . . ., with A(0)
i = Ai , i = −1, 0, 1 and Â(0)

0 = A0 − I . It can be proved, in the context of Markov chains, [2] that 
the sequence −( Â(h)

0 )−1 A−1 converges to the minimal nonnegative solution G of the matrix equation.
If the QBD process is not null recurrent, applicability and quadratic convergence of the algorithm are guaranteed [2, 

Theorems 7.5, 7.6]. In the null recurrent case, it has been proved in [12] that convergence is linear with factor 1
2 .

Without any further assumption on the structure of the blocks, each step of CR requires a small number of matrix 
multiplications and one matrix inversion for the resulting computational cost of O (m3) arithmetic operations (ops) per step. 
On the other hand, there are several models from the applications in which the blocks Ai exhibit special structures. In 
order to decrease the computational complexity of the iterations, variations of CR which exploit these structures have been 
proposed, see for instance [3,18,1].

Here, we are interested in analyzing the case where the blocks Ai are quasiseparable matrices. That is, the case where the 
off-diagonal submatrices of A−1, A0 and A1, strictly contained in the upper or in the lower triangular part, have low rank 
with respect to m. The maximum of the ranks of the off-diagonal submatrices is called quasiseparable rank and a matrix 
with quasiseparable rank k is called k-quasiseparable. Observe that k-quasiseparable matrices include banded matrices. 
These structures are encountered in wide and important classes of applications like, bidimensional random walks [17], the 
Jackson tandem queue model [15] and other QBD processes, or, for instance, in the finite differences discretization of elliptic 
PDEs.

Our goal is to design a version of CR which exploits the rank structures of the blocks Ai and which can be implemented 
at a substantially lower cost. This way, we may arrive at designing effective solvers both for block tridiagonal block Toeplitz 
systems and for the quadratic matrix equations encountered in QBD Markov chains. Indeed, a way to reach this goal is to 
find out if some structure of the blocks A(h)

i is maintained during the CR steps (1), and then to try to exploit this structure 
in order to design an effective implementation of CR.

Looking at the iterative scheme (1), one can find out that the quasiseparable rank can grow exponentially at each step. 
Despite that, plotting the singular values of the off-diagonal blocks of the matrices A(h)

i shows an interesting behavior as 
reported in Fig. 1. For a randomly generated QBD process with tridiagonal blocks of size 1600, the singular values of an 
off-diagonal submatrix of size 799 × 800 in A(h)

0 have an exponential decay in the first 20 steps of CR.
It is evident that, even though the number of nonzero singular values grows at each step of CR, the number of singular 

values above the machine precision – denoted by a horizontal line in Fig. 1 – is bounded by a moderate constant. Moreover, 
the singular values seem to stay below a straight-line which constitutes an asymptotic bound. That is, they get closer to 
this line as h → ∞. The logarithm scale suggest that the computed singular values σ (h)

i decay exponentially with i and the 
basis of the exponential grows with h but has a limit less than 1.

We will prove this asymptotic property relying on the technology of rank-structured matrices and relate the basis of 
the exponential decay to the width of the domain of analyticity of the matrix function ϕ(z)−1 for ϕ(z) = −z−1 A−1 + I −
A0 − z A1.

It is interesting to observe that the three matrix sequences A(h)
i , i = −1, 0, 1 are related to certain Schur complements 

of the block tridiagonal block Toeplitz matrix trid(A−1, A0, A1), obtained after permuting block rows and columns with the 
odd-even permutation [4]. A slightly different sequence is given by the Schur complements obtained by applying Gaussian 
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