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In this paper, we show how to construct various extensions of Shanks transformation for 
functions in a vector space. They are aimed at transforming a function tending slowly to its 
limit when the argument tends to infinity into another function with better convergence 
properties. Their expressions as ratio of determinants and recursive algorithms for their 
implementation are given. A simplified form of one of them is derived. It allows us to 
obtain a convergence result for an important class of functions. An application to integrable 
systems is discussed.
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1. Introduction

In numerical analysis and in applied mathematics, many methods make use of sequences. If a sequence is slowly con-
verging, it can be useful to accelerate it. This can be done, in some cases, by modifying the process which constructs the 
sequence. However, if this process is a black box and if one has no access to it, another possibility is to transform the 
sequence, by a so-called sequence transformation, into another sequence converging faster to the same limit under some 
assumptions. For sequences of numbers, one of the most well-known such transformations is due to Shanks [12]. It can 
be recursively implemented by the scalar ε-algorithm of Wynn [13]. This algorithm was extended by Wynn to sequences 
of vectors [15]. But, since the algebraic theory underlying this vector ε-algorithm could not be easily derived from its rule, 
two other generalizations were proposed in [3]. The first one can be recursively implemented by two different topological 
ε-algorithms (TEA1 and TEA2), while the second one requires the use of the Sβ-algorithm [10] (see also [11]). Recently, 
the rules of the TEA1 and TEA2 were greatly simplified, thus leading to the simplified topological ε-algorithms (STEA1 and 
STEA2) [7]. The corresponding software and applications can be found in [8].

Similarly, when a real (or complex) function of a real (or complex) variable is tending slowly to a limit with its argument, 
it can be transformed into a new function by a function transformation. Function transformations are usually obtained by 
replacing the divided differences appearing in a scalar sequence transformation by derivatives after letting a parameter tend 
to zero. This is why the adjective confluent was added to the name of the algorithms for implementing them. A Shanks (real 
or complex) function transformation was presented by Wynn together with the corresponding confluent ε-algorithm for its 
implementation [14]. Let us mention that generalizations of this transformation and of this algorithm to the confluent vector 
case were never proposed. Later, a topological Shanks function transformation for functions in a vector space, together with 
its confluent topological ε-algorithm, were proposed in [4].
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The aim of this paper is to consider several topological Shanks function transformations in a vector space and to dis-
cuss the implementation of some of them by confluent recursive algorithms. A new and cheaper confluent topological 
ε-algorithm is presented. This new algorithm allows us to obtain a convergence theorem for an important class of func-
tions. An application to integrable systems is discussed.

2. Topological Shanks function transformations

Let t �−→ f(t) ∈ E be a function depending on a parameter t ∈ D ⊆ K (R or C), where E is a vector space of sufficiently 
differentiable functions on K. In many practical situations, E is Rp or Rp×q . We want to construct, for a fixed value of k, 
a function transformation f ∈ E �−→ ek ∈ E such that, for all t , ek(t) = S ∈ E if the function f satisfies the linear differential 
equation of order k, called the kernel of the transformation,

a0(f(t) − S) + a1f ′(t) + · · · + akf(k)(t) = 0, ∀t (1)

where S ∈ E is independent of t , and a0, . . . , ak ∈ K are independent of k and t . Obviously, a0 has to be different from zero 
and it does not restrict the generality to impose the normalization condition a0 = 1. In the case of a complex or real function, 
such a transformation was proposed by Wynn [14] together with the corresponding recursive algorithm, the confluent 
ε-algorithm, for its implementation. We will now generalize this transformation and this algorithm to a vector space E .

In Section 2.1, we consider a kernel of the form (1) leading to two transformations, while, in Section 2.3, we will discuss 
another form of the kernel giving rise to two other transformations.

2.1. First topological Shanks function transformations

Obviously if the function f ∈ E satisfies a relation of the form (1) where the coefficients ai are known, such a function 
transformation is simply defined by

ek(f(t)) = f(t) + a1f ′(t) + · · · + akf(k)(t), ∀t, (2)

since a0 = 1, and it holds, ∀t , ek(f(t)) = S.
Let us now see how to compute the coefficients ai when they are unknown. Differentiating (1), we have, for all t

a0f ′(t) + · · · + akf(k+1)(t) = 0.

As in the case of sequences, we have to transform this relation in E into a relation in K. Taking the duality product with 
y ∈ E∗ (the algebraic dual space of E , that is the space of linear functionals on E), we obtain

a0〈y, f ′(t)〉 + · · · + ak〈y, f(k+1)(t)〉 = 0.

Then, several possibilities occur. Considering this relation, differentiating k − 1 times the functions appearing in it, and 
taking the normalization condition into account leads to a system of k + 1 equations in the unknowns a0, . . . , ak (case 1). 
Instead of differentiating several times the preceding relation, another way is to use k different linear functionals y1, . . . , yk ∈
E∗ (case 2). Obviously, a mixture of these two strategies could also be considered but it leads to a more complicated 
transformation and it will not be considered further.

In both cases, adding the normalization condition, a system of k + 1 equations in k + 1 unknowns is obtained, and, by 
construction, the transformation (2) gives ∀t , ek(f(t)) = S.

Let us now apply the same procedure to a function which does not belong to the kernel of the transformation. Any of 
the preceding strategies for constructing the algebraic system giving the coefficients ai can still be used. However, since its 
solution now depends on k it will be designated by a(k)

i for i = 0, . . . , k. Then, in both cases, we define the first topological 
Shanks function transformation by

ek(f(t)) = a(k)
0 f(t) + a(k)

1 f ′(t) + · · · + a(k)

k f(k)(t), (3)

with a(k)
0 = 1, and, by construction, it holds

Theorem 1. If, for all t,

f(t) = S − a1f ′(t) − · · · − akfk(t),

then, for all t,

ek(f(t)) = S.
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