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A general procedure to determine collocation methods for high order boundary value 
problems is presented. These methods provide globally continuous differentiable solution 
in the form of polynomial functions and also numerical solution on a set of discrete points. 
Some special cases are considered. Numerical experiments are presented which support 
theoretical results and provide favorable comparisons with other existing methods.
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1. Introduction

Let us consider the general r-th order ordinary differential equation (ODE)

y(r)(x) = f (x,y(x)) , x ∈ I = [a,b] , r > 1 (1)

where y(x) = (y(x), y′(x), . . . , y(q)(x)
)
, 0 ≤ q < r. We associate with equation (1) the r boundary conditions

B[y](x) = g(x) , g ∈R
r, x ∈ ∂ I (2)

where B is a linear operator.
We suppose that f : [a, b] ×R

q+1 → R is continuous at least in the interior of the domain of interest and it satisfies a uni-
form Lipschitz condition in y, which means that there exists a nonnegative constant L such that, whenever (x, y0, y1, . . . , yq)

and (x, y0, y1, . . . , yq) are in the domain of f , the inequality

∣∣ f
(
x, y0, y1, . . . , yq

)− f
(
x, y0, y1, . . . , yq

)∣∣≤ L
q∑

k=0

∣∣yk − yk

∣∣ (3)

holds. Moreover, we assume that the conditions for the existence and uniqueness of solution of problem (1)–(2) in a certain 
appropriate domain of [a, b] ×R

q+1 are satisfied [1] and that the solution y(x) is differentiable with continuity up to what 
is necessary.

Problems of these kinds model a wide spectrum of nonlinear phenomena. In fact, ordinary (and also partial) differential 
equations arise in the study of astrophysics, hydrodynamic and hydro magnetic stability, fluid dynamics, astronomy, beam 
and long wave theory, engineering and applied physics (see [7,21,23,30,31] and references therein).
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Finite difference and finite element methods (see for instance [5,8,22]) have long histories as particularly flexible and 
powerful methods for the numerical solution of differential equations. In the last decades spectral methods (see [6,24,28]
and references therein) have emerged as a valid alternative to those methods, being very much successful and extremely 
accurate for the numerical solution of ordinary or partial differential equations. They make use of global representations, 
usually by high-order polynomials or Fourier series. Spectral methods have been intensively and increasingly studied, es-
pecially, since the development of fast transform methods, with applications in problems where high accuracy is required. 
Theoretical studies and numerical experience have confirmed that for problems with smooth solutions they converge faster 
than finite difference and finite element methods and with a degree of accuracy that local methods cannot match. Summary 
of some applications is given in [24] (see also references therein). The basic idea of spectral methods is to use a set of basis 
functions φi , i = 0, . . . , N , also called trial or expansion approximating functions (very smooth and global such as polynomi-
als), to represent the solution to a problem as a truncated series yN (x) =∑N

i=0 aiφi(x), x ∈ (a, b) where ai are the unknown 
coefficients. A spectral method is characterized by a specific way to determine these coefficients. For instance, in collocation
methods (also called pseudo-spectral) the numerical approximation yN (x) of the solution y(x) to a problem is required to 
satisfy the given differential equation in a discrete set of points, called collocation nodes, of the interval (a, b). The choice 
of appropriate spectral representation depends on the kind of initial or boundary conditions involved in the problem.

More recently, in [32] the authors, taking up an idea in [10–18,20], proved that the method, based on a Birkhoff type 
interpolation [15], is well conditioned.

In this paper we will give a unified theory of collocation methods based on Birkhoff–Lagrange interpolation, already 
proposed by the authors and others (see [10,12–14,16–18,20,32]).

The outline of the paper is the following: in Section 2 we derive the new class of methods and we give an a priori 
estimation of the global error. In Section 3, in order to implement the presented methods, we propose an algorithm to 
compute the numerical solution of (1)–(2) in a set of nodes. Then, in Section 4 we consider some special cases of the 
considered problem which include methods already present in the literature. The analysis is accompanied by numerical 
examples (Section 5), which support theoretical results. Comparison with other existing methods is also given.

2. The Birkhoff–Lagrange collocation methods

Preliminary, we prove that problem (1)–(2) is equivalent to a Fredholm integral equation. We observe that (2) is a linear 
interpolation problem. Suppose that it has a unique solution, that is, there exists a unique polynomial of degree r − 1, 
Pr−1[y](x) ∈Pr−1 which satisfies

B [Pr−1] (x) = g, x ∈ ∂ I. (4)

Moreover, if y ∈ Cr(I), then

y(x) = Pr−1[y](x) +
b∫

a

K x
r (x, t) y(r) (t)) dt (5)

where

K x
r (x, t) = 1

(r − 1)!
[
(x − t)r−1+ − Pr−1

[
(x − t)r−1+

]
(x)
]

(6)

is the Peano kernel of the remainder in the considered interpolation problem, and (x − t)+ = x − t if x ≥ t , (x − t)+ = 0 if 
x < t .

Remark 1. From (5), (2) and (4) it follows that B 
[

K x
r

]
(x) = 0, x ∈ ∂ I .

Theorem 1. In the above hypothesis and notations the boundary value problem (1)–(2) is equivalent to the Fredholm integral equation

y(x) = Pr−1[y](x) +
b∫

a

K x
r (x, t) f (t,y(t)) dt (7)

where Pr−1[y](x) and K x
r (x, t) are, respectively, the unique polynomial solution and the corresponding Peano kernel in the interpola-

tory problem (2).

Proof. Let y(x) be the solution of (1)–(2). Hence the linear interpolatory problem (2) has a unique solution, that is, there 
exists a unique polynomial Pr−1[y](x) of degree r − 1 and the related Peano kernel K x

r (x, t) such that (5) holds. The (7)
follows tacking into account (1).

Now, suppose that y(x) is solution of (7). Under the hypothesis on Pr−1[y] and K x
r (x, t), relations (2) and (5) hold. 

Therefore, from (5), (7) and the uniqueness of the Peano Kernel, the (1) follows.
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