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We introduce bivariate C1 piecewise quintic finite element spaces for curved domains 
enclosed by piecewise conics satisfying homogeneous boundary conditions, construct local 
bases for them using Bernstein–Bézier techniques, and demonstrate the effectiveness of 
these finite elements for the numerical solution of the Monge–Ampère equation over 
curved domains by Böhmer’s method.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Piecewise polynomials on curved domains bounded by piecewise algebraic curves and surfaces is a promising but little 
studied tool for data fitting and solution of partial differential equations. Since implicit algebraic surfaces are a well-
established modeling technique in CAD [6], we are interested in developing isogeometric schemes [21] for domains with 
such boundaries, where the geometric models of the boundary are used exactly in the form they exist in a CAD system 
rather than undergoing a remeshing to fit into the traditional isoparametric finite element approach.

In this paper we continue the work started in [14], where C0 splines vanishing on a piecewise conic boundary have been 
introduced. In contrast to both the isoparametric curved finite elements and the isogeometric analysis of [21], our approach 
does not require parametric patching on curved subtriangles, and hence does not depend on the invertibility of the Jacobian 
matrices of the nonlinear geometry mappings. Therefore our finite elements remain piecewise polynomial everywhere in 
the physical domain.

This approach allows to incorporate conditions of higher smoothness in Bernstein–Bézier form standard for the theory 
and practice of smooth piecewise polynomials on polyhedral domains [22]. It turns out however that imposing boundary 
conditions make the otherwise well understood spaces of e.g. bivariate C1 macro-elements on triangulations significantly 
more complex. Even in the simplest case of a polygonal domain, the dimension of the space of splines vanishing on the 
boundary is dependent on its geometry, with consequences for the construction of stable bases (or stable minimal deter-
mining sets) [15,16].

In this paper we suggest a local basis defined through a minimal determining set for the space of C1 piecewise quintic 
polynomials vanishing on a piecewise conic boundary and apply the resulting finite element space to the numerical solution 
of the fully nonlinear Monge–Ampère equation on domains with such boundary. The latter is done within the framework of 
Böhmer’s method [7]. The results are based in part on the thesis of the second named author [26].
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Fig. 1. A triangulation of a curved domain with ordinary triangles (green), pie-shaped triangles (pink) and buffer triangles (blue). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Böhmer’s method requires stable local bases of C1 piecewise polynomials vanishing on the boundary. In an earlier paper 
[16] we developed such bases on polygonal domains and demonstrated their effectiveness in solving fully nonlinear elliptic 
equations. Further details on Böhmer’s method and references to the literature on this subject are given in Section 4.1. Note 
that to the best of our knowledge no method for fully nonlinear equations has been tested before on curved domains.

It is important to mention that the isoparametric approach to C0 curved elements is problematic when finite element 
spaces of C1 or higher smoothness are sought, see the remarks in [10, Section 4.7]. A successful C1 quintic construction of 
this type developed in [5] seems difficult to extend to higher smoothness or higher polynomial degree. Similar difficulties 
to achieve C1 or higher smoothness have recently been reported for the tensor-product based isogeometric analysis as soon 
as more than one patch is needed to model the geometry, see e.g. [11]. This is expected because isogeometric analysis also 
employs “isoparametric mappings,” with tensor-product spline spaces replacing polynomials.

Remarkably, the standard Bernstein–Bézier techniques for dealing with piecewise polynomials on triangulations [22,27]
as well as recent optimal assembly algorithms [1–3] for high order elements are carried over to the spaces used here 
without significant loss of efficiency, see [14].

The paper is organized as follows. The spaces of C1 piecewise polynomials on domains with piecewise conic boundary 
are introduced in Section 2, whereas Section 3 presents our construction of a local basis for the main space of interest 
S1,2

5,0(�). Section 4 briefly summarizes Böhmer’s method for fully nonlinear elliptic equations and presents a number of 
numerical experiments for the Monge–Ampère equation on smooth domains, including a circular domain, an elliptic domain, 
and piecewise conic domains with C1 and C2 boundaries.

2. C 1 piecewise polynomials on piecewise conic domains

We first recall from [14] the assumptions on a domain � and its triangulation � with curved pie-shaped triangles at the 
boundary.

Let � ⊂ R
2 be a bounded curvilinear polygonal domain with � = ∂� = ⋃n

j=1 � j , where each � j is an open arc of an 
algebraic curve of at most second order (i.e., either a straight line or a conic). For simplicity we assume that � is simply 
connected. Let Z = {z1, . . . , zn} be the set of the endpoints of all arcs numbered counter-clockwise such that z j , z j+1 are 
the endpoints of � j , j = 1, . . . , n, with z j+n = z j . Furthermore, for each j we denote by ω j the internal angle between the 
tangents τ+

j and τ−
j to � j and � j−1, respectively, at z j . We assume that ω j > 0 for all j.

Let � be a triangulation of �, i.e., a subdivision of � into triangles, where each triangle T ∈ � has at most one edge 
replaced with a curved segment of the boundary ∂�, and the intersection of any pair of the triangles is either a common 
vertex or a common (straight) edge if it is non-empty. The triangles with a curved edge are said to be pie-shaped. Any 
triangle T ∈ � that shares at least one edge with a pie-shaped triangle is called a buffer triangle, and the remaining triangles 
are ordinary. We denote by �0, �B and �P the sets of all ordinary, buffer and pie-shaped triangles of �, respectively, such 
that � = �0 ∪�B ∪�P is a disjoint union, see Fig. 1. Let V , E, V I , E I , V B , E B denote the set of all vertices, all edges, interior 
vertices, interior edges, boundary vertices and boundary edges, respectively.

For each j = 1, . . . , n, let q j ∈ P2 be a polynomial such that � j ⊂ {x ∈ R
2 : q j(x) = 0}, where Pd denotes the space of all 

bivariate polynomials of total degree at most d. By changing the sign of q j if needed, we ensure that ∂νx q j(x) < 0 for all x in 
the interior of � j , where νx denotes the unit outer normal to the boundary at x, and ∂a := a · ∇ is the directional derivative 
with respect to a vector a. Hence, q j(x) is positive for points in � near the boundary segment � j . We assume that q j ∈ P1
if � j is a straight interval. Clearly, q j is an irreducible quadratic polynomial if � j is a genuine conic arc and in all cases

∇q j(x) �= 0 if x ∈ � j . (1)

Following [14] we assume that � satisfies the following conditions:

(a) Z = {z1, . . . , zn} ⊂ V B .
(b) No interior edge has both endpoints on the boundary.
(c) No pair of pie-shaped triangles shares an edge.
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