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In this paper we present a variant of the method for the scattering data computation for 
the Zakharov–Shabat system, recently proposed by the authors. The algorithm that charac-
terizes this variant allows us to compute the scattering data also in the presence of jump 
discontinuities of the initial potential.
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1. Introduction

Over the last 50 years, due to their relevance in applications, much research has been conducted in the field of non-
linear partial differential equations (NPDEs) of integrable type [1,2]. Among them, a special role is played by the nonlinear 
Schrödinger (NLS) equation which governs the signal transmission in fiber optics [5,7], as well as in surface waves on deep 
water [1,2].

The initial value problem (IVP) for the NLS equation can be formulated as follows:{
iut + uxx ± 2|u|2u = 0, x ∈R, t > 0

u(x,0) = u0(x), x ∈R
(1)

where i denotes the imaginary unit, u = u(x, t) is the unknown potential, the subscripts x and t designate partial derivatives 
with respect to position and time, u0 ∈ L1(R) is the initial potential and the ± sign depends on symmetry properties of u. 
The plus sign regards the focusing case and the minus sign the defocusing case. As Zakharov and Shabat proved [11], the 
IVP for the NLS equation can be associated to the first order system of ordinary differential equations

iJ
∂�

∂x
(λ, x) − V(x)�(λ, x) = λ�(λ, x), x ∈R (2)

where λ ∈C is a spectral parameter and

J =
(

1 0
0 −1

)
, V = i

(
0 u0
v0 0

)
(3)

with v0 = u∗
0 in the focusing case and v0 = −u∗

0 in the defocusing case. Here and in the sequel the asterisk denotes the 
complex conjugate.
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With the help of this system, known as the ZS system, the solution of (1) can theoretically be obtained from the initial 
potential u0 by means of the so-called Inverse Scattering Transform (IST) technique.

An effective method to compute all the scattering data for the ZS system has been recently developed under the hypoth-
esis that u0 ∈ C0(R) [4]. In this paper we propose a variant of this method that allows us to apply the method even in the 
case u0 /∈ C0(R).

The paper is organized as follows. In Section 2 we recall the definition of the scattering data and the properties needed 
to the illustration of our method. In Section 3 we recall the five steps for computing the scattering data [4] under the 
assumption that u0 ∈ C0(R). The technique that allows us to extend the method to the case u0 /∈ C0(R) is illustrated in 
Section 4. In Section 5 we consider an initial potential with a discontinuity jump to illustrate the effectiveness of our 
method. Finally Section 6 is devoted to the conclusions.

2. Scattering data: definitions and properties

We start by recalling the crucial role played in the computation of the scattering data by the Jost solutions [2], that is 
by the solutions of the ZS system (2) which satisfy the asymptotic conditions

(�̄(λ, x), �(λ, x)) = e−iλJx(I + o(1)), x → +∞ (4)

(�(λ, x), �̄(λ, x)) = e−iλJx(I + o(1)), x → −∞ (5)

where λ ∈R, I denotes the identity matrix and J is defined in (3).
Since these solutions satisfy the same linear first order system, there exist transition matrices

A�(λ) =
(

a�1(λ) a�2(λ)

a�3(λ) a�4(λ)

)
, Ar(λ) = A�(λ)−1 =

(
ar1(λ) ar2(λ)

ar3(λ) ar4(λ)

)
(6)

such that

(�̄(λ, x), �(λ, x)) = (�(λ, x), �̄(λ, x))A�(λ)

(�(λ, x), �̄(λ, x)) = (�̄(λ, x), �(λ, x))Ar(λ).

Denoting by C+ and C− the upper and lower half plane and by C̄+ and C̄− their closures, respectively, the following 
analytic properties hold true. The Jost functions �(λ, x) and �(λ, x) are continuous in λ ∈ C̄

+ , are analytic in λ ∈ C
+ , and 

behave as e−iλxJ as λ → ∞ in C̄+ , whereas �̄(λ, x) and �̄(λ, x) are continuous in λ ∈ C̄
− , are analytic in λ ∈ C

− , and 
behave as e−iλxJ as λ → ∞ in C̄− . We can then rewrite (4) and (5) as the Riemann–Hilbert problem

(�̄(λ, x), �̄(λ, x)) = (�(λ, x), �(λ, x)) J S(λ) J

where

S(λ) =
(

T (λ) L(λ)

R(λ) T (λ)

)
. (7)

In (7) T (λ) represents the transmission coefficient, R(λ) denotes the reflection coefficients from the right and L(λ) stands 
for the reflection coefficients from the left.

If T (λ) has no poles in the complex upper half plane C+ (as occurs in the defocusing case), the transmission coefficient 
and the reflection coefficients are the only scattering data to identify. Otherwise, denoting by λ1, . . . , λn the so-called bound 
states, that is the finitely many poles of T (λ) in C+ , and by m1, . . . , mn the corresponding multiplicities, we have to identify 
the parameters {n, m j, λ j} as well as the coefficients {(��) js, (�r) js} of the spectral sums from the left and from the right

S�(α) =
n∑

j=1

eiλ jα

m j−1∑
s=0

(��) js
αs

s! , α ≥ 0,

Sr(α) =
n∑

j=1

eiλ∗
j α

m j−1∑
s=0

(�r) js
αs

s! , α ≤ 0,

where 0! = 1.
The method developed in [4] allows us to compute all the scattering data, i.e. the spectral matrix S introduced in (7)

as well as the discrete scattering data {λ j, (��) js, (�r) js} whenever S�(α) and Sr(α) are known in N ≥ M = m1 + ... + mn

points.
To this end we need to compute the Marchenko kernels from the left ��(α) and from the right �r(α). These two kernels 

are, in fact, connected to the above spectral coefficients and spectral sums as follows:
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