
Applied Numerical Mathematics 116 (2017) 204–214

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Numerical issues in computing the antitriangular factorization 

of symmetric indefinite matrices

Teresa Laudadio a,1, Nicola Mastronardi a,∗,2, Paul Van Dooren b,3

a Istituto per le Applicazioni del Calcolo “M. Picone”, sede di Bari, Consiglio Nazionale delle Ricerche, Via G. Amendola, 122/D, I-70126 Bari, 
Italy
b Catholic University of Louvain, Department of Mathematical Engineering, Avenue Georges Lemaitre 4, B-1348 Louvain-la-Neuve, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 3 October 2016

Keywords:
Indefinite symmetric matrix
Antitriangular matrices
Inertia

An algorithm for computing the antitriangular factorization of symmetric matrices, relying 
only on orthogonal transformations, was recently proposed. The computed antitriangu-
lar form straightforwardly reveals the inertia of the matrix. A block version of the latter 
algorithm was described in a different paper, where it was noticed that the algorithm 
sometimes fails to compute the correct inertia of the matrix.
In this paper we analyze a possible cause of the failure of detecting the inertia and propose 
a procedure to recover it. Furthermore, we propose a different algorithm to compute the 
antitriangular factorization of a symmetric matrix that handles most of the singularities of 
the matrix at the very end of the algorithm.
Numerical results are also given showing the reliability of the proposed algorithm.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Given a symmetric indefinite matrix A ∈ R
n×n with inertia (n−, n0, n+), where n−, n0 and n+ are the number of eigen-

values of A less, equal and greater than zero, respectively, and defined n1 = min{n−, n+}, n2 = max{n−, n+} −n1, there exists 
(see [10] for details) an orthogonal matrix Q ∈ R

n×n such that

A = Q M Q T , M =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 Y T

0 0 X Z T

0 Y Z W

⎤
⎥⎥⎦

}n0
}n1
}n2
}n1

(1)

with Z ∈ R
n1×n2 , Y ∈ R

n1×n1 nonsingular lower antitriangular, W ∈ R
n1×n1 symmetric and X ∈ R

n2×n2 symmetric definite if 
n2 > 0, i.e., X = θ LLT with L nonsingular lower triangular and
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θ =
{

1, if n+ > n−
−1, if n+ < n−

.

When n+ = n− , θ and X are not defined and the matrix M reduces to

M =
⎡
⎣ 0 0 0

0 0 Y T

0 Y W

⎤
⎦ .

Hence, X is symmetric positive definite if θ = 1 and is symmetric negative definite if θ = −1. The matrix M is said to be a 
Block AntiTriangular (BAT) matrix or, equivalently, M is said to be in a BAT form. In this paper we denote a zero submatrix 
by 0, whose size is trivial to determine and by e(k)

j the j-vector of the canonical basis of Rk . If A ∈ R
n×n , we use the

matlab notation A(i1 : i2, j1 : j2) to indicate the submatrix of A made by the rows i and j, for i ∈ {i1, ii + 1, · · · , i2}, and 
j ∈ { j1, j1 + 1, · · · , j2}. Moreover, the machine precision is denoted by ε.

An algorithm for computing the BAT form of the symmetric matrix (1) is described in [10]. The algorithm is backward 
stable relying only on stable orthogonal transformations. At the i-th iteration of the algorithm, i = 2, . . . , n, we use the BAT 
form of A(1 : i − 1, 1 : i − 1) to compute the BAT form of the submatrix A(1 : i, 1 : i) in a recursive way. In this paper we 
refer to the latter algorithm as the S-BAT algorithm.

A block extension of the S-BAT algorithm is proposed in [3], where at the i-th iteration the BAT form of A(1 : i + k − 1,

1 : i + k − 1), k ≥ 1, is computed, yielding the BAT form of A(1 : i − 1, 1 : i − 1). In this paper it is noticed that, although only 
stable orthogonal transformations are performed, the algorithm sometimes fails to detect the exact inertia of the matrix.

In this context, the main aim of the present paper is to analyze a possible cause of the loss of accuracy in the compu-
tation of the inertia with the S-BAT algorithm and to develop a procedure to retrieve the exact one. Moreover, we propose 
a different algorithm for computing the BAT form of a symmetric indefinite matrix aimed to overcome this issue. The idea 
behind the algorithm is to consider a Lanczos-like procedure [7] in order to handle tiny eigenvalues at the end of the algo-
rithm. The new algorithm inherits the nice properties of the Lanczos algorithm, such as the convergence behavior depending 
on the minimal polynomial of the matrix. We will refer to this algorithm as the H-BAT algorithm.

The BAT form plays an important role in a variety of applications, where it is important to update (downdate) the fac-
torization of a symmetric indefinite matrix modified by a symmetric rank-one matrix in a fast and stable way. For instance, 
this problem occurs in tracking the dominant eigenspace of a symmetric indefinite matrix [9]. Moreover, a fast procedure for 
modifying the factorization of an indefinite Hessian is required in optimization problems based on quasi-Newton methods 
[6,7,11].

In [10] it is shown that the BAT factorization of a symmetric indefinite matrix A ∈ R
n×n can be efficiently updated 

in a stable way when modified by a symmetric rank-one matrix with O (n2) floating point operations and, hence, such 
factorization is a good candidate to solve the aforementioned problems. Updating rank-one modifications of factorizations, 
like the LDL factorization [4] of a symmetric indefinite matrix, in a stable way is not so straightforward due to the block 
diagonal matrix D requiring, in the worst case, O (n3) floating point operations.

Finally, symmetric indefinite matrices arise in a block form in numerous saddle point problems [2], so that the BAT 
factorization can be applied [12].

The paper is organized as follows.
The analysis of the cause of failure in detecting the inertia of the algorithm proposed in [10] and the procedure to retrieve 

the exact one are described in Section 2. In Section 3 a new algorithm for computing the anti-triangular factorization of 
symmetric matrices is presented. The numerical examples are described in Section 4 followed by the conclusions.

2. Numerical issues

In this section we analyze a cause of failure of the S-BAT algorithm [10] in detecting the numerical inertia when com-
puting the antitriangular factorization of a symmetric matrix.

Let us define the τ -inertia of a symmetric matrix A ∈ R
n×n , denoted by Inertia(A, τ ), as the triple (n̂−, ̂n0, ̂n+), where 

n̂−, ̂n0 and n̂+ are the number of computed eigenvalues smaller than −τ , smaller or equal to τ in absolute value, and 
greater than τ , respectively, with τ > 0 a fixed tolerance.

We shortly describe the i-th iteration of the S-BAT algorithm, i = 2, . . . , n.
At the i-th iteration, the computed BAT form of the principal submatrix A(1 : i −1, 1 : i −1) is used to reduce the principal 

submatrix A(1 : i, 1 : i) to BAT form. At the end of the i-th iteration, we have the following “partial” BAT factorization

A = Q (i)

[
M(i)

1 C (i)T

C (i) T (i)

]
Q (i)T

where M(i)
1 ∈ R

i×i is in a BAT form with inertia (i+, i0, i−), C (i) ∈ R
(n−i)×i , T (i) ∈ R

(n−i)×(n−i) symmetric and Q (i) ∈ R
n×n

orthogonal.
For the sake of simplicity, we assume that i0 = 0. The case i0 > 0 can be handled in a similar way. The submatrix M(i)

1
looks like
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