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Volterra Integral Equations (VIEs) arise in many problems of real life, as, for example, 
feedback control theory, population dynamics and fluid dynamics. A reliable numerical 
simulation of these phenomena requires a careful analysis of the long time behavior of 
the numerical solution. Here we develop a numerical stability theory for Direct Quadrature 
(DQ) methods which applies to a quite general and representative class of problems. We 
obtain stability results under some conditions on the stepsize and, in particular cases, 
unconditional stability for DQ methods of whatever order.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In the mathematical representation of real life history-dependent problems (such as mechanical systems, electric circuit, 
epidemiology, population growth,...), systems of Volterra integral equations are widely used (see e.g., [5,9–11]) and have 
been subject of extensive investigations over the years (see [5,6,10] and the bibliography therein). Here, we are concerned 
in the numerical simulations of linear VIEs of the type

y(t) = f (t) +
t∫

0

k(t, s)y(s)ds, t ≥ 0, (1)

where k, defined for 0 ≤ s ≤ t < ∞, with values in the space Rd×d of d × d matrices, is a Volterra kernel (k(t, s) = 0 when 
s > t) and the forcing function f is defined for t ≥ 0 and takes values in Rd . We assume that f (t) and k(t, s) are at least 
continuous for t ≥ 0 and 0 ≤ s ≤ t < +∞ respectively. Existence and uniqueness results can be found in [10].

The stability analysis of the numerical method used in the simulation of these equations is essential to assure that the 
approximating solution preserves the characteristics and the long time behavior of the continuous problem.

An analysis of this kind is already well known in the literature (see [1,2,14,13,17] and [4,3] for a thorough discus-
sion), but in spite of the considerable advances that have been made in the last years, there are still many aspects to 
investigate and open question to answer. The main idea in the numerical stability analysis is to identify more and more 
realistic model problems (representative of the applications) and to study how numerical methods behave when simulating 
them.
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Our approach consists in discretizing some suitable classes of equations (1) by Direct Quadrature (DQ) methods and 
study the asymptotic behavior of the numerical error as a function of the stepsize h.

In Section 2 we introduce some basic material needed in the paper. In Section 3 we define the model problem and 
obtain conditions on the stepsizes h for the DQ methods to be stable. Furthermore, we identify subclasses of problems 
for which the methods turn out to be unconditionally stable. In Section 4 we prove the boundedness of the numerical 
solution, whenever the forcing term f (t) is bounded. In Section 5 numerical examples are given and Section 6 contains 
some concluding remarks.

2. Preliminaries

Consider the general DQ–(ρ, σ) method for the numerical integration of the linear VIE (1)

yn = fn + h
n0−1∑
j=0

wnjknj y j + h
n∑

j=n0

ωn− jknj y j, n = n0,n0 + 1, . . . , (2)

where yn � y(tn), fn = f (tn), knj = k(tn, t j), with tn = nh for n = 0, 1, . . ., h > 0 is the stepsize and wnj , ω j are the weights 
of a Gregory quadrature formula (which corresponds to Adams–Moulton (ρ, σ)-quadrature formula, see [4,13,18] for a 
general discussion on DQ–(ρ, σ) methods). Here, we assume that the weights are non-negative and that y0 = f0, . . . , yn0−1, 
n0 ≥ 1, are given starting values. The property

W = sup
n

ωn < +∞ (3)

of (ρ, σ) weights (see for example [18]) will be useful in the following discussion.
Let us write the error equation for the DQ method (see for example [12, p. 104])

en = Tn(h) + h
n0−1∑
j=0

wnjknjη j + h
n∑

j=n0

ωn− jknje j, n = n0,n0 + 1, . . . (4)

where en = y(tn) − yn is the global error, Tn(h) represents the local discretization error and η j , j = 0, . . . , n0 − 1 are the 
starting errors. According to [18] the local error Tn(h) has an expansion of order p, that is (see definition in [12, p. 105]) 
there exists a function Q (t) such that

Tn(h) = Q (tn)h
p + Rn(h)hq, q > p. (5)

From now on we assume that supn ‖Q (tn)‖ ≤ Q̄ , with Q̄ independent of n and h and sup0<h<h∗ supn≥0 ‖Rn(h)‖ is finite for 
small h∗ > 0. A remark on these assumptions is reported at the end of Section 3.

All the analysis below will be based on the following definition of stability of the numerical scheme (2):

Definition 1. The numerical method (2) for solving a class of Volterra integral equations (1) is said to be stable for that class 
of equations if, using a given stepsize h > 0, the global error en given by (4)–(5) satisfies

‖en‖ ≤ Ehp, ∀n ≥ 0,

with E constant independent of n and h.

According to Definition 1, our request for a numerical method to be stable is not only that the local errors do not build 
up catastrophically in the step by step process, but also that the global errors remain bounded for a fixed stepsize h > 0, 
and may be made arbitrary small reducing h, over long-time intervals.

From now on we will assume that h satisfies

det(I − hω0knn) 	= 0, (6)

where I is the identity matrix of size d, in order to assure the solvability of the discrete problem (2). Furthermore, we 
assume the starting errors η j , j = 0, . . . , n0 − 1, to be accurate at least of order p, so to incorporate them into the local 
error Tn(h) (that is Tn(h) is now equal to Tn(h) + h 

∑n0−1
j=0 wnjknjη j ) and make (5) still valid.

3. Numerical stability for linear equations

This section is devoted to the study of the behavior of a numerical method of the form (2) when applied to problem (1). 
The class of problems that we are going to examine consists of equations (1) where the kernel k satisfies:
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