
JID:APNUM AID:3196 /FLA [m3G; v1.214; Prn:4/05/2017; 9:45] P.1 (1-12)

Applied Numerical Mathematics ••• (••••) •••–•••

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

A second-order hybrid finite volume method for solving 

the Stokes equation

Zhongying Chen a, Yuesheng Xu b,∗,1, Jiehua Zhang a,c

a School of Mathematics, Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou 510275, People’s 
Republic of China
b School of Date and Computer Science, Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou 510275, 
People’s Republic of China
c School of Education Science, Kaili College, Guizhou 556000, People’s Republic of China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
Finite volume method
Stokes equation
Inf-sup conditions

This paper presents a second-order hybrid finite volume method for solving the Stokes 
equation on a two dimensional domain. The trial function space of the method for 
velocity is chosen to be a quadratic conforming finite element space with a hierarchical 
decomposition technique on triangular meshes, and its corresponding test function space 
consists of piecewise constant functions and piecewise quadratic polynomial functions 
based on a dual partition of the domain. The trial function space and test function space 
of the method for pressure are chosen to be a linear finite element space. We derive the 
inf-sup conditions of the discrete systems of the method on triangular meshes by using a 
relationship between the finite volume method and the finite element method. The well-
posedness of the proposed finite volume method is obtained by using the Babuska–Lax–
Milgram theorem. The error estimates of the optimal order are obtained in the H1-norm for 
velocity and in the L2-norm for pressure. Numerical experiments are presented to illustrate 
the theoretical results.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider in this paper the numerical solution of the Dirichlet problem of the Stokes equation by using a finite volume 
method. The Dirichlet problem of the Stokes equation is important in fluid mechanics, which has a wide range of practical 
applications.

There are extensive research ideas developed to improve the numerical approximation of the Stokes equation. Numerical 
solutions of the Stokes equation are usually obtained through the use of finite element methods (FEMs), for which the 
reader is referred to [1,2,4,6,16,17] and the references cited therein. This is because FEMs can handle a complex geometry 
region and is easier to construct higher-order accuracy formats. However, the main drawback of FEMs is its computational 
complexity and loss of the local conservation property. The conservation of mass is an important criterion in the numerical 
solutions of computational fluid dynamics. Finite volume methods (FVMs) not only inherit the advantages of FEMs but also 
require less computational costs and preserve the local conservativeness for the numerical fluxes, which can be fundamen-
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tally important for simulations of many physical models. Thus FVMs are widely used in computational fluid mechanics and 
other applications [14,18,23,28].

Many FVMs were developed for solving the Stokes equation in recent years. However most of the existing FVMs are 
limited to the cases where the velocity and pressure fields are approximated by piecewise constants or piecewise linear 
polynomials [10,11,13,15,19,24,25,27,29,31–33]. There is almost no literature available for FVMs using quadratic functions 
or higher-order for the velocity term on triangle meshes for the Stokes problem. The theoretical analysis on higher-order 
FVMs for the Stokes problem on the quadrilateral meshes remains unknown. It is worth mentioning that the high order 
FVMs researches on elliptic equations had great breakthroughs in recent years. For example, some convergent properties of 
both linear and quadratic finite volume methods for elliptic equations were analyzed in [30]. A class of high order hybrid 
FVMs for elliptic equations was presented in [5] by combining high order FEMs and linear FVMs. The necessary and sufficient 
conditions for the uniform ellipticity of the family of the bilinear forms of the FVMs for elliptic problems were established 
in terms of geometric requirements on triangle meshes [7–9], especially paper [8] supplies a general construction of the 
test spaces which match the trial spaces for the FVMs. The biquadratic FVMs for elliptic equations were established on 
quadrilateral meshes [20]. A proof of the inf-sup condition on vertex-centered FVMs of arbitrary order for elliptic equations 
was established on quadrilateral meshes [34,35].

The main purpose of this paper is to develop a second-order hybrid FVM for solving the Stokes problem with a hybrid 
quadratic Lagrange finite volume element for the velocity term and a linear finite element for the pressure term of the 
equation. The hybrid FVMs offer several advantages. Besides the hybrid FVMs have the advantages of the general FVMs, the 
most advantage is that the dual grid partitions of the hybrid element are simple. The dual grids for higher-order hybrid FVMs 
can be the same as that for linear ones [5,7,8], while the traditional way is to introduce a control volume for each node [18,
21], in which the geometry of the control volumes will complicate the analysis and implementation of higher-order FVMs. 
For example, the dual grids for the Lagrange quadratic finite volume elements consist of the control volumes of vertices and 
middle points of edges, while for the hybrid Lagrange quadratic finite volume elements it only needs the control volumes 
of vertices. Thus, the hybrid FVMs can simplify its theoretical analysis. In addition, for the second discrete bilinear form of 
the FVM for solving the Stokes problem in this paper, we can get the inf-sup condition of the discrete bilinear form from 
the existing FEMs results. In fact, the main task in the analysis for FVMs and FEMs of the Stokes equation is to verify the 
inf-sup conditions for the discrete systems.

This paper is organized in five sections. In the next section, we introduce the stationary Stokes equation and establish the 
second-order hybrid FVM for solving the Stokes problem. The continuity and inf-sup conditions of the discrete bilinear forms 
that result from the FVM are established in the third section, and the solvability of the proposed FVM is given. Optimal order 
error estimates for the FVM are established in the fourth section. In Section 5 we present numerical examples to illustrate 
the error estimates and the convergence orders.

2. A hybrid FVM for the Stokes problem

We establish in this section the hybrid FVM for solving the Stokes equation.
Let � denote a domain in R2 with a polygonal boundary ∂�. We shall use the standard notation L2(�) for the space 

of square Lebesgue integrable functions with the norm ‖ · ‖0,� and Hm (�) for the Sobolev function space with the norm 
‖ · ‖m,� and the semi-norm | · |m,� . Generally, we shall drop the subscript � for brevity. We introduce the following spaces

L2
0 (�) :=

⎧⎨⎩p : p ∈ L2 (�) ,

∫
�

p = 0

⎫⎬⎭ ,

H1
0 (�) :=

{
v : v ∈ H1 (�) , v|∂� = 0

}
,

and

Hm(�) := (Hm (�))2.

Consider the Stokes problem for steady flow of a heavily viscous fluid with Dirichlet boundary conditions: Find u :=
(u1, u2) ∈ H2 (�) and p ∈ H1 (�) such that⎧⎨⎩−μ�u + ∇p = f, in �,

∇ · u = 0, in �,
u = 0, on ∂�,

(1)

where f is the given external volumetric force acting on the fluid, μ > 0 is the given constant fluid viscosity, u is the 
vectorial fluid velocity field to be determined and p is the scalar pressure to be determined. Note that if (u, p) solves (1)
then (u, p + c) also solves (1) for any constant c. That is the pressure p is determined up to a constant. To obtain a unique 
pressure, we impose an extra condition p ∈ L2

0 (�) in the Stokes problem (1). For the sake of simplicity, we assume μ := 1. 
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