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In this paper, we propose and analyze a superconvergent discontinuous Galerkin (DG) 
method for nonlinear second-order initial-value problems for ordinary differential equa-
tions. Optimal a priori error estimates for the solution and for the auxiliary variable that 
approximates the first-order derivative are derived in the L2-norm. The order of conver-
gence is proved to be p + 1, when piecewise polynomials of degree at most p are used. 
We further prove that the p-degree DG solutions are O(h2p+1) superconvergent at the 
downwind points. Finally, we prove that the DG solutions are superconvergent with order 
p + 2 to a particular projection of the exact solutions. The proofs are valid for arbitrary 
nonuniform regular meshes and for piecewise P p polynomials with arbitrary p ≥ 1. Com-
putational results indicate that the theoretical orders of convergence and superconvergence 
are optimal.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we analyze a superconvergent discontinuous Galerkin (DG) method for the following general nonlinear 
second-order initial-value problem (IVP)

u′′ = f (t, u, u′), 0 ≤ t ≤ T , u(0) = α, u′(0) = β, (1.1)

where u : [0, T ] → R, f : [0, T ] × R × R → R is a given function, and α, β are given initial values. We assume that f
sufficiently differentiable and satisfies a Lipschitz condition on the set D = [0, T ] × R × R. The smoothness conditions for 
the function f depend on the degree of the polynomial. The precise conditions are described in later sections.

Many mathematical models in engineering and science applications are described by ordinary differential equations 
(ODEs). Nonlinear second-order IVPs of the form (1.1) are widely used in many disciplines. They are used to describe how 
physical systems change in time or space. Perhaps the most source of nonlinear second-order IVPs is Newton’s law of 
motion, which governs the motion of everyday objects, with u′′ representing acceleration and f (t, u, u′) force. For example, 
consider an object with constant mass m which is displaced a distance u(t) along a one-dimensional path, when acted upon 
by a force F . Then Newton’s second law of motion gives mu′′ = F (t, u, u′), where F is the total force acting on the object, 
which may depend on the time t , the displacement u, and the velocity u′ . Thus, the ODE governing its dynamics has the 
form (1.1) with f (t, u, u′) = 1

m F (t, u, u′). Many important dynamical systems are governed by an equation of motion that 
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is a nonlinear second-order ODE of the form (1.1). In particular, the damped oscillations of a rigid pendulum that rotates 
on a pivot subject to a uniform gravitational force in the vertical direction is governed by the nonlinear second-order ODE 
u′′ + cu′ + b sin(u) = 0, where the unknown function u(t) measures the angle between the pendulum and the vertical axis 
(angular displacement), c ≥ 0 is the coefficient of friction, and the constant b = g

�
, where g is the acceleration due to gravity 

and � is the length of the pendulum. When the friction coefficient c = 0, the ODE describes the undamped oscillations of 
the pendulum.

Analytical solutions of IVPs of the form (1.1) exist only for simple dynamical systems, and therefore numerical methods 
are often required. There are many numerical schemes proposed in the literature for solving higher-order IVPs. Typically, 
IVPs for higher-order ODEs can be reformulated as a first-order system of equations. A wide range of numerical methods 
have been proposed in the literature for solving first-order systems. The most popular methods are Taylor and Runge–Kutta 
methods. Taylor schemes are obtained by truncating Taylor expansions. The practical difficulty of employing Taylor approx-
imations is that they require to determine many derivatives. Runge–Kutta methods, which avoid the use of derivatives, are 
perhaps the most popular of the numerical methods for first-order systems because of their simplicity, relatively high accu-
racy, and broad applicability. Despite the popularity of high-order Runge–Kutta methods for integrating first-order systems 
of equations, they suffer from severe stability-based time step restrictions for very stiff problems. Here, we propose a DG 
method for solving (1.1), which has considerable advantages over the classical numerical method. The main advantages are: 
(i) it is A-stable, (ii) it is locally conservative, (iii) it exhibits strong superconvergence that can be used to estimate the 
discretization error, and (iv) it is suitable for hp-adaptivity.

DG method combines the best proprieties of the classical continuous finite element and finite volume methods such as 
consistency, flexibility, stability, conservation of local physical quantities, robustness and compactness. Recently, DG meth-
ods become highly attractive and popular, mainly because these methods are high-order accurate, nonlinear stable, highly 
parallelizable, easy to handle complicated geometries and boundary conditions, and capable to capture discontinuities with-
out spurious oscillations. The original DG finite element method (FEM) was introduced in 1973 by Reed and Hill [33]
for solving steady-state first-order linear hyperbolic problems. It provides an effective means of solving hyperbolic prob-
lems on unstructured meshes in a parallel computing environment. The discontinuous basis can capture shock waves and 
other discontinuities with accuracy [14,34]. The DG method can easily handle adaptivity strategies since the h-refinement 
(mesh refinement and coarsening) and the p-refinement (method order variation) can be done without taking into account 
the continuity restrictions typical of conforming FEMs. Moreover, the degree of the approximating polynomial can be eas-
ily changed from one element to the other [34]. Adaptivity is of particular importance in nonlinear hyperbolic problems 
given the complexity of the structure of the discontinuities and geometries involved. Due to local structure of DG meth-
ods, physical quantities such as mass, momentum, and energy are conserved locally through DG schemes. This property 
is very important for flow and transport problems. Furthermore, the DG method is highly parallelizable [27,26]. Because 
of these nice features, the DG method has been analyzed and extended to a wide range of applications. In particular, DG 
methods have been used to solve ODEs [7,23,28,30], hyperbolic [4,8,7,19,32,24,26,2,3,12,5,9] and diffusion and convection–
diffusion [20,15–17] PDEs, to mention a few.

Related theoretical results in the literature including superconvergence results and error estimates of the DG methods 
for ODEs are given in [30,23,22,28,25,7,6,11]. In 1974, LaSaint and Raviart [30] presented the first error analysis of the DG 
method for first-order IVPs. They showed that the DG method is equivalent to an implicit Runge–Kutta method and proved 
a rate of convergence of O(hp) for general triangulations and of O(hp+1) for Cartesian grids. Delfour et al. [23] investigated 
a class of Galerkin methods which lead to a family of one-step schemes generating approximations up to order 2p + 2
for the solution of an ODE, when polynomials of degree p are used. In their proposed method, the numerical solution 
uh at the discontinuity point tn is defined as an average across the jump i.e., αnuh(t−

n ) + (1 − αn)uh(t+
n ). By choosing 

special values of αn , one can obtain the original DG scheme of LeSaint and Raviart [30] and Euler’s explicit, improved, 
and implicit schemes. Delfour and Dubeau [22] introduced a family of discontinuous piecewise polynomial approximation 
schemes. They presented a more general framework of one-step methods such as implicit Runge–Kutta and Crank–Nicholson 
schemes, multi-step methods such as Adams–Bashforth and Adams–Moulton schemes, and hybrid methods. Later, Johnson 
[28] proved new optimal a priori error estimates for a class of implicit one-step methods for stiff ODEs obtained by using the 
DG method with piecewise polynomials of degree zero and one. Johnson and Pitkaränta [29] proved a rate of convergence 
of O(hp+1/2) for general triangulations and Peterson [32] confirmed this rate to be optimal. Richter [35] obtained the 
optimal rate of convergence O(hp+1) for some structured two-dimensional non-Cartesian grids. We also would like to 
mention the work of Estep [25], where the author outlined a rigorous theory of global error control for the approximation 
of first-order IVP. In [7], Adjerid et al. showed that the DG solution of one-dimensional hyperbolic problems exhibit an 
O(hp+2) superconvergence rate at the roots of the right Radau polynomial of degree p + 1. Furthermore, they obtained a 
(2p + 1)-th order superconvergence rate of the DG approximation at the downwind point of each element. They performed 
a local error analysis and showed that the local error on each element is proportional to a Radau polynomial. They further 
constructed implicit residual-based a posteriori error estimates but they did not prove their asymptotic exactness. Adjerid and 
Temimi [6], proposed a DG method to solve higher-order IVPs for linear ODEs. They proved that the DG exhibits an optimal 
O(hp+1) convergence rate in the L2-norm. They further showed that the p-degree DG solution of differential equation of 
order m and its first m − 1 derivatives are O(h2p+2−m) superconvergent at the end of each step. They also established that 
the p-degree DG solution is O(hp+2) superconvergent at the roots of (p + 1 − m)-degree Jacobi polynomial on each step. 
More recently, the author [11] constructed and analyzed a posteriori error estimate of the discretization errors for the DG 



Download English Version:

https://daneshyari.com/en/article/5776699

Download Persian Version:

https://daneshyari.com/article/5776699

Daneshyari.com

https://daneshyari.com/en/article/5776699
https://daneshyari.com/article/5776699
https://daneshyari.com

