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This paper deals with a class of functional differential equations with piecewise continuous 
arguments. Block boundary value methods (BBVMs) are extended to solve this class of 
equations. It is shown under the Lipschitz condition that the order of convergence of an 
extended block boundary value method coincides with its order of consistency. Moreover, 
we study the linear stability of the extended methods and give the corresponding 
asymptotical stability criterion. In the end, with several numerical examples, the theoretical 
results and the computational effectiveness of the methods are further illustrated.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper will be concerned with initial value problems for functional differential equations with piecewise continuous 
arguments (FDEPCAs):

y′(t) = f (t, y(t), y(�t�)) , t ∈ [0,+∞); y(0) = y0, (1.1)

where �·� denotes the greatest integer function, y, y0 ∈ R
d , and it is assumed that function f : [0, +∞) ×R

d ×R
d →R

d is 
smooth enough and satisfies the Lipschitz condition for all t ∈ [0, +∞), y1, y2, z1, z2 ∈R

d:

‖ f (t, y1, z1) − f (t, y2, z2)‖∞ ≤ L1‖y1 − y2‖∞ + L2‖z1 − z2‖∞. (1.2)

The solution of (1.1) can be defined as follows.

Definition 1.1. (Cf. [24]) A solution of (1.1) on [0, +∞) is a function y(t) that satisfies the following conditions:

(i) y(t) is continuous on [0, +∞);
(ii) the derivative y′(t) exists at each point t ∈ [0, +∞), with the possible exception of the points �t� ∈ [0, +∞) where 

one-sided derivatives exist;
(iii) equation (1.1) is satisfied on each interval [n, n + 1) (n = 0, 1, 2, . . .).
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Problems (1.1) are useful to describe certain actual phenomena from physics, biology, control science and the other 
scientific fields. Some analytical results for this kind of problems have been presented by many authors (see e.g. [10–12]). 
A detailed introduction to the theory of FDEPCAs can be found in Wiener’s monograph [24].

Generally speaking, however, it is difficult or even impossible to obtain an exact solution of problem (1.1). Hence, in the 
recent years, efforts have been made to develop various numerical methods to solve this kind of problems and study the 
corresponding algorithmic theory. In [15,17–19], Liu, Song et al. constructed Runge–Kutta methods to solve linear FDEPCAs 
and derived a number of stability and oscillation results. Wang [21,22] and Liu [16] further extended Runge–Kutta methods 
and their theory to nonlinear situation of FDEPCAs. Moreover, Wen & Li [23] and Song & Liu [20] considered using linear 
multistep methods to solve problem (1.1) and analyzed the linear and nonlinear stability.

The above approach focused on Runge–Kutta methods and linear multistep methods. They did not involve boundary value 
methods (BVMs). In fact, BVMs and the induced BBVMs have been verified to be very effective numerical methods for solving 
various initial or boundary value problems of differential equations (see e.g. [1–6,13,14]), whose elementary theory refers 
to Brugnano & Trigiante’s monograph [7]. Furthermore, Zhang, Chen et al. adapted BVMs and BBVMs to deal with delay 
differential equations (cf. [27]), delay differential-algebraic equations (cf. [28,29]), Volterra integral and integro-differential 
equations (cf. [8]) and delay Volterra integro-differential equations (cf. [9]). Subsequently, Xu, Zhao and Gao investigated 
stability of BBVMs for neutral pantograph equations and neutral multi-delay differential equations in [25,26], respectively.

Although BVMs and BBVMs have been applied to function differential equations with delay, only the cases of the equa-
tions with constant delay or proportional delay were concerned. As we know, up to now, no result has been presented 
for BBVMs applied to problems (1.1). Hence, in the present paper, we will adapt BBVMs for problems (1.1). The outline of 
this paper is as follow. In Section 2, we will give a brief review to BBVMs and then extend this kind of methods to solve 
problems (1.1). In Section 3, we will analyze the convergence of the extended BBVMs and derive a convergence criterion. 
In Section 4, we will study the asymptotical stability of the methods and give a sufficient condition for the numerical sta-
bility. In Section 5, with several numerical examples, we will further illustrate the theoretical results and computational 
effectiveness of the methods.

2. BBVMs applied to FDEPCAs

In this section, we will consider adapting the underlying BVMs to solve FDEPCAs (1.1) on [0, T ]. For convenience, we first 
give a brief review to the underlying BVMs and the corresponding BBVMs for the d-dimensional problems of ODEs

y′(t) = f (t, y), t ∈ [0, T ]; y(0) = y0. (2.1)

A full introduction to these methods can be found in Brugnano and Trigiante’s monograph [7].
Let 0 = t0 < t1 < · · · < ts = T be a uniform mesh on [0, T ] with ti = t0 + ih, i = 0, 1, . . . , s and h = T /s. Then, the problem 

(2.1) can be approximated by a k-step BVM with k1 initial conditions and k2 (= k − k1) final conditions, that is

k−i∑
j=−i

α
(i)
i+ j yi+ j = h

k−i∑
j=−i

β
(i)
i+ j f i+ j, i = 1, · · · ,k1 − 1, (2.2)

k2∑
j=−k1

αi+ j yi+ j = h
k2∑

j=−k1

βi+ j f i+ j, i = k1, · · · , s − k2, (2.3)

k−i∑
j=−i

α
(i)
i+ j ys−k+i+ j = h

k−i∑
j=−i

β
(i)
i+ j f s−k+i+ j, i = s − k2 + 1, · · · , s, (2.4)

where αi , α
(i)
i+ j , βi , β

(i)
i+ j are some given real coefficients, and yi and f i are approximations to y(ti) and f (ti, y(ti)), respec-

tively. The scheme (2.3) is called main scheme, (2.2) and (2.4) are called auxiliary schemes, and they are assumed to have the 
same local order. By introducing the notations

y = (yT
1 , yT

2 , · · · , yT
s )T , F (y) =

(
f (t1, y1)

T , f (t2, y2)
T , · · · , f (ts, ys)

T
)T

,

method (2.2)–(2.4) can be rewritten in a compact form

(A ⊗ Id)y − h(B ⊗ Id)F (y) = −a0 ⊗ y0 + hb0 ⊗ f (t0, y0), (2.5)

where Id is the d × d identity matrix, ⊗ denotes the Kronecker product, Ae = [a0|A] ∈ Rs×(s+1) is given by
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