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1. Introduction

The paper is devoted to the approximation of the derivatives of the weighted Hilbert transform of f

[)P-H

+00
dp
Hp(fw,t)zﬂ][ %w(x)dx f * f® w(x)dx, (1)
0

where p € {1,2,...}, t >0, w(x) := wg(x) = e *x* is a Laguerre weight. The integral in (1) can be also defined as a
finite part integral in the Hadamard sense (see [7,16]). Integrals of the type (1) appear for instance in hypersingular integral
equations, models for many problems in Physics and Engineering areas (see [16] and the reference therein, [5,10,1]). Usually,
in the literature, quadrature rules are proposed for the approximation of H,(fw,t) for any fixed t. Instead, in the present
paper, setting
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we propose to approximate the function FP)(f) by the p-th derivative of a suitable Lagrange polynomial interpolating
F(f) at Laguerre zeros. For a correct error estimate in weighted uniform spaces, at first we determine the class of F(f)
depending on the Zygmund-type space f belongs to. Since in the general case the samples of F(f) at the interpolation knots
cannot be exactly computed, we approximate them by a truncated Gauss-Laguerre rule (see [12]). Moreover, by reusing the
same interpolation knots, it is possible approximate also the p-th derivative of the function f(t)Ho(w,t), avoiding the
differentiation of the density function f.

This procedure is especially advisable when the approximation of Hp (fw,t) is required for a “large” number of t and/or
the uniform convergence of the rule to H,(fw) is needed. This happens, for instance, when (1) appears in a hypersingular
integral equation and in order to solve it one wants to use a collocation method.

The paper is organized as follows. In Section 2 there are collected some auxiliary results and notations. Section 3 provides
the exposition of the numerical methods and results about the stability and the convergence, with error estimates in some
weighted uniform spaces. Section 4 contains a brief description of computational details in the implementation process. In
Section 5 some numerical experiments are discussed and comparisons with some standard numerical methods are shown.
Finally in Section 6 the proofs of our main results are stated.

2. Basic results and properties

Along all the paper the constant C will be used several times, having different meaning in different formulas. Moreover
from now on we will write C # C(a, b, ...) in order to say that C is a positive constant independent of the parameters
a,b,..., and C=C(a,b,...) to say that C depends on a,b,.... Moreover, if A,B > 0 are quantities depending on some
parameters, we will write A ~ B, if there exists a constant 0 < C ## C(A, B) such that g < A < CB. Finally, P, will denote
the space of the algebraic polynomials of degree at most m.

Let w(x) = e *x* be the Laguerre weight of parameter ¢ > —1 and let {p,;(W)};, be the corresponding sequence of
orthonormal polynomials with positive leading coefficients. Let us denote by {x;};_; the zeros of py(w) in increasing
order, i.e. Xk <Xmk+1,k=1,...,m — 1. From now on, for any fixed 0 <6 < 1, the integer j will denote the index of the
zero of ppm(w) s.t.

=] = i k: >4mot. 3
j=jmm) k:?:lzl,r,].,m{< Xm,k = 4mo} (3)

With u(x) =x¥e™*/2,y > 0, we will consider

{feC®©.00): lim (fuy®) =0}, y=>0,

Cy= x—07"

{f eC%([0,00)): lim (fu)(x) = 0} , y=0,
X— 400
equipped with the norm

I fllc, = lfull:=llfulle = Sulgl(fu)(X)l,

where CO(E) is the space of the continuous functions on the set E. Sometimes, for the sake of brevity, we will use || f|| =

SUPxeg | f (0]
For smoother functions, we introduce the Sobolev-type spaces of order r € N

W, (1) = [f €Cyu: fTD e AC(0, +00) and || fP @ u] < +oo} ,

where ¢(x) = +/x and AC((0, +00)) is the set of the absolutely continuous functions on every closed subset of (0, +00). We
equip them with the norm

I llwya = Ifull + 1f @ ull.
In what follows Wy (u) = C,. For any f € C, and for any t > 0, let

Qu(f.0u= sup [[udp, fl,
O<h<t
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