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An optical flow variational model is proposed for a sequence of images defined on a 
domain in R2. We introduce a regularization term given by the L1 norm of a fractional 
differential operator. To solve the minimization problem we apply the split Bregman 
method. Extensive experimental results, with performance evaluation, are presented to 
demonstrate the effectiveness of the new model and method and to show that our 
algorithm performs favorably in comparison to another existing method. We also discuss 
the influence of the order α of the fractional operator in the estimation of the optical flow, 
for 0 ≤ α ≤ 2. We observe that the values of α for which the method performs better 
depend on the geometry and texture complexity of the image. Some extensions of our 
algorithm are also discussed.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Optical flow is a tool for detecting and analyzing motion in a sequence of images. The underlying idea is to depict 
the displacement of patterns in the image sequence as a vector field, named the optical flow vector field, generating the 
corresponding displacement function. In their seminal paper, Horn and Schunck [12] suggested a variational method for the 
computation of the optical flow vector field. In this approach the goal is to minimize an energy functional consisting of a 
similarity term (or data term) and a regularity term:

argmin
u∈H

E(u) = argmin
u∈H

(R(u) + S(u)).

The space H denotes an admissible space of vector fields, R denotes the regularity term for the vector field u, and S
denotes the similarity term that depends on the data image sequence. In particular the functional is of the form [12]

E(u) = β2
∫
�

(|∇u1|2 + |∇u2|2)d� +
∫
�

(I1(x + u(x)) − I0(x))2d�. (1)

* Corresponding author.
E-mail address: ecs@mat.uc.pt (E. Sousa).

1 Research supported in part by the Portuguese National Funding Agency for Science, Research and Technology (FCT) under Project PTDC/MATNAN/
0593/2012 and by CMUC – UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional 
Development Fund through the Partnership Agreement PT2020.

http://dx.doi.org/10.1016/j.apnum.2016.04.011
0168-9274/© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:ecs@mat.uc.pt
http://dx.doi.org/10.1016/j.apnum.2016.04.011


JID:APNUM AID:3022 /FLA [m3G; v1.175; Prn:3/05/2016; 16:13] P.2 (1-13)

2 S.Gh. Bardeji et al. / Applied Numerical Mathematics ••• (••••) •••–•••

Here, I0 and I1 is the image pair, u = (u1(x), u2(x))T is the two-dimensional displacement field and β is a fixed parameter. 
The first term (regularization term) penalizes high variations in u to obtain smooth displacement fields. The second term 
(data term) is also known as the optical flow constraint. It assumes, that the intensity values of I0(x) do not change 
during its motion to I1(x + u(x)). Horn and Schunck [12] observed that β2 plays a significant role only for areas where the 
brightness gradient is small, preventing haphazard adjustments to the estimated flow velocity. Disadvantages of this model 
consist of not preserving discontinuities in the flow field and of not handling outliers efficiently. To overcome the difficulties 
presented by the Horn–Schunck functional, several extensions and improvements have been developed [21].

In [22] the optical flow model proposed consists in considering an L1 norm in the regularizing term and the similarity 
term is substantially changed by introducing an auxiliary variable v. The process is a result of first changing the quadratic 
factors that appeared in the classical method (1), obtaining an energy functional which is the sum of the total variation of 
u and an L1 term:

E(u) =
∫
�

|∇u|d� + λ

∫
�

|ρ(u)|d�, (2)

where |∇u| = |∇u1| + |∇u2| and the image residual denoted by ρ(u) (we omitted the explicit dependency on u0 and x) is 
given by

ρ(u) = ∇ I1(x + u0).(u − u0) + I1(x + u0) − I0(x). (3)

The vector u0 is a given disparity map and the functional was obtained for a fixed u0 and using the linear approximation 
for I1(x + u) near x + u0.

Secondly, a convex relaxation term is introduced [22] in order to minimize this energy functional efficiently obtaining

Eθ (u,v) =
∫
�

{
|∇u| + 1

2θ
|u − v|2 + λ|ρ(v)|

}
d�, (4)

where θ is a small constant, such that v is a close approximation of u. Setting θ very small forces the minimum of Eθ to 
occur when u and v are nearly equal, reducing the energy (4) to the original energy (2).

Many approaches for optical flow computation replace the nonlinearity intensity profile I1(x + u) by a first Taylor ap-
proximation to linearize the problem locally as in the case presented above. Since such approximations are only valid for 
small motions, in the presence of large displacements, the method fails when the gradient of the image is not smooth 
enough. This means that additional techniques are required to determine the optical flow correctly. Therefore an iterative 
warping is applied in the implementation to compensate for image nonlinearities. A multiscale strategy is also included to 
allow disparities between the images.

In this work we propose an optical flow model for a sequence of images defined on a domain in R2 which consists 
of a modification of the model introduced in [22], by considering for the regularization term the L1 norm of a fractional 
derivative operator [9]. The numerical method developed to solve the minimization problem involves a multiscale strategy 
[15] and the split Bregman method described in [11]. The effectiveness of the new model and numerical approach is shown 
by presenting experimental results that use the test sequences available in the Middlebury benchmark database designed 
by [2]. We also compare its performance with other existing numerical method.

In the next section we present the variational method and in Section 3 we describe the numerical approach which 
includes the split Bregman method, Euler Lagrange equations, a shrinkage operator, a thresholding operator and finite dif-
ferences. In Section 4 several experiments are shown and we end with some conclusions and general comments in Section 5.

2. Problem formulation

We propose a generalized method that involves fractional derivatives in the regularization term. Recently fractional 
derivatives have been brought to the field of image processing and fractional differentiation based methods have been 
demonstrating advantages over already existing methods, see for instance [8,9,17,23]. There are different definitions of frac-
tional derivatives. Until now, in the subject of image processing, the fractional Riemann–Liouville derivative has been widely 
adopted and is the one used herein. Different reasons could be behind this choice. The fractional Riemann Liouville deriva-
tive can be defined for less regular functions, it is naturally related with diffusive processes and can be easily discretized 
through the standard Grünwald–Letnikov approximation. Let us introduce the definition of fractional Riemann–Liouville 
derivative.

The left Riemann–Liouville derivative of order α, for a scalar function u, is defined by

Dα−u(t) = 1

�(m − α)

dm

dtm

t∫
a

u(τ )(t − τ )m−α−1dτ , m − 1 < α < m, (5)

for a ≤ t ≤ b, where m is a positive integer and � denotes the Gamma function
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