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Abstract

In this paper, we first introduce an alternative proof of the error estimates of the numerical methods
for solving linear fractional differential equations proposed in Diethelm [6] where a first-degree compound
quadrature formula was used to approximate the Hadamard finite-part integral and the convergence order
of the proposed numerical method is O(Δt2−α), 0 < α < 1, where α is the order of the fractional derivative
and Δt is the step size. We then use a similar idea to prove the error estimates of the high order numerical
method for solving linear fractional differential equations proposed in Yan et al. [37], where a second-degree
compound quadrature formula was used to approximate the Hadamard finite-part integral and we show that
the convergence order of the numerical method is O(Δt3−α), 0 < α < 1. Nnumerical examples are given to
show that the numerical results are consistent with the theoretical results.
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1. Introduction

In this paper, we consider numerical methods for solving the following linear fractional differential equa-
tion

C
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α
t x(t) = βx(t) + f(t), t ∈ [0, 1], (1)

x(0) = x0, (2)

where 0 < α < 1 and β < 0, x0 ∈ R denotes the initial value, f is a given function on the interval [0, 1] and
C
0 D

α
t x(t) denotes the Caputo fractional order derivative.
Diethelm [6] introduced a numerical method for solving (1)-(2) by approximating the Hadamard finite-

part integral with the first-degree compound quadrature formula and proved that the convergence order
is O(Δt2−α), where Δt is the step size. Ford et al. [15] used the similar method to consider the time
discretization of the following time-fractional partial differential equation
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α
t u(t, x)−Δu(t, x) = f(t, x), t ∈ [0, T ], x ∈ Ω, (3)

u(0, x) = 0, x ∈ Ω, (4)

u(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ω, (5)
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