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In this paper, a numerical method is proposed to approximate the solution of a two-
dimensional scattering problem of time-harmonic elastic wave from a rigid obstacle. By 
Helmholtz decomposition, the scattering problem is reduced to a system of Helmholtz 
equations with coupled boundary conditions. Then, we prove that the system of Helmholtz 
equations has only one solution under certain conditions, and propose an integral equation 
method to solve it numerically based on Tikhonov regularization method. Finally, numerical 
examples are presented to show the feasibility and effectiveness of the proposed method.

© 2016 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

The scattering problems of elastic wave have aroused much attention from both the direct scattering problems [1,4,6,
12,17] and the inverse scattering problems [2,7,9,10,13–16] for their significant applications in many scientific areas such 
as geophysics, seismology, nondestructive testing and geophysical exploration [12]. The direct scattering problems are to 
determine the elastic wave field from a knowledge of the obstacle, while the inverse scattering problems are to identify 
the obstacle from measurements of the far field or the near field. In this paper, we consider a direct scattering problem of 
time-harmonic elastic wave in an isotropic homogeneous medium at a rigid obstacle.

Let us first introduce the geometry on which the considered problems is defined. Consider a two-dimensional elastically 
rigid obstacle described by a bounded domain D with C2-boundary ∂ D , and suppose that its infinite exterior domain R2 \ D̄
is filled with a homogeneous and isotropic elastic medium with a unit mass density. Denote by τ = (τ1, τ2) the unit tangent 
vector and by ν = (ν1, ν2) the outward normal vector on a closed curve such as ∂ D if they do not give rise to confusion. 
Moreover, they meet that

ν1 = τ2, ν2 = −τ1. (1.1)

Let u = (u1, u2) and u be a vector function and a scalar function, respectively. The scalar curl operator and the vector curl 
operator are defined respectively by

curl u := ∂xu2 − ∂yu1, curl u := (∂yu,−∂xu).

Then, the propagation of time-harmonic wave in the exterior of the bounded domain D with Lamé constants λ and μ and 
density ρ is modeled by a two-dimensional Navier equation [2,13,14,16]
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μ�u + (λ + μ)∇∇ · u + ρω2u = 0 in R
2 \ D̄, (1.2)

where u = uin + usc denotes the total displacement vector field, uin is the incident wave, usc is the scattered wave, ω is the 
angular frequency and the Lamé constants satisfy μ > 0 and λ + μ > 0. For simplicity, we assume ρ ≡ 1 throughout the 
following text. Because the obstacle is elastically rigid, it holds the homogeneous Dirichlet boundary condition

u = 0 on ∂ D. (1.3)

Given an incident field uin such that uin|∂ D ∈ [C1,σ (∂ D)]2, where uin satisfies the Navier equation (1.2). Then, the two-
dimensional scattering problem of elastic wave from a rigid obstacle is to find the scattered field usc ∈ [C2(R2 \ D̄) ∩ C1(R2 \
D)]2 such that

μ�usc + (λ + μ)∇∇ · usc + ω2usc = 0 in R
2 \ D̄, (1.4)

usc = −uin on ∂ D, (1.5)

x̂ · ∇∇ · usc − ikp∇ · usc = o(
1

|x| ), |x| → ∞, (1.6)

x̂ · ∇curl usc − ikscurl usc = o(
1

|x| ), |x| → ∞, (1.7)

where x̂ := x
|x| , kp = ω√

λ+2μ
is the compressional wavenumber, ks = ω√

μ
is the shear wavenumber. (1.6) and (1.7) are the 

Kupradze radiation conditions which guarantee that the scattered waves are outgoing. As we all know, this elastic scattering 
problem has at most one solution; and the existence of its solution is proved by using the integral equation method [7,17]. 
We refer to [5,9] for solving numerically the direct scattered problem (1.4)–(1.7) by using the integral equation method with 
Green’s tensor 
(x, y) of the Navier equation, where the scattered field is assumed that in the form

usc(x) =
∫
∂ D


(x, y)ϕ(y)ds(y), x ∈R
2 \ D̄.

Next we state the uniqueness and existence of the elastic scattering solution as the following lemma.

Lemma 1. [7,17] For a given incident field uin such that uin|∂ D ∈ [C1,σ (∂ D)]2 , the elastic scattering problem (1.4)–(1.7) has a unique 
solution in [C2(R2 \ D̄) ∩ C1(R2 \ D)]2 .

The rest of this paper is organized as follows. In section 2, we first formulate the elastic scattering problem into a system 
of Helmholtz equations with coupled boundary conditions by Helmholtz decomposition. Further, we prove that the system 
of Helmholtz equations has only one solution. In section 3, an integral equation method is proposed to solve the system of 
Helmholtz equations based on Tikhonov regularization method. In section 4 numerical examples are presented to show the 
validity and efficiency of the proposed method. Finally, some conclusions are drawn and further studies are discussed.

2. Helmholtz equations with coupled boundary conditions

It is valuable to be noted that the two components of usc are coupled in the Navier equation (1.4). To obtain decoupled 
equations, it is crucial to introduce the Helmholtz decomposition [13,14,16] for splitting the total field into a compressional 
part and a shear part. For any solution usc of equation (1.4), the Helmholtz decomposition takes the form

usc = ∇φ + curlψ, (2.1)

where φ and ψ are scalar potential functions.
Substituting (2.1) into (1.4) yields

∇[(λ + 2μ)�φ + ω2φ] + curl[μ�ψ + ω2ψ] = 0,

which is fulfilled if φ and ψ satisfy the following Helmholtz equations:

�φ + k2
pφ = 0, �ψ + k2

s ψ = 0, (2.2)

where kp = ω√
λ+2μ

and ks = ω√
μ

. Combining (2.1) with (2.2), we have explicit representations of φ and ψ in terms of usc :

φ = − 1

k2
p
∇ · usc, ψ = 1

k2
s

curl usc. (2.3)

So, φ is the compressional part and ψ is the shear part. Correspondingly, we call kp and ks the compressional wavenumber 
and the shear wavenumber, respectively.



Download English Version:

https://daneshyari.com/en/article/5776741

Download Persian Version:

https://daneshyari.com/article/5776741

Daneshyari.com

https://daneshyari.com/en/article/5776741
https://daneshyari.com/article/5776741
https://daneshyari.com

