Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Circumferences of 3-connected claw-free graphs, II

Zhi-Hong Chen

Butler University, Indianapolis, IN 46208, USA

ARTICLE INFO

Article history: Received 29 September 2016 Received in revised form 5 April 2017 Accepted 10 April 2017

Keywords: Claw-free graph Circumference Minimum degree Petersen graph

ABSTRACT

For a graph H, the circumference of H, denoted by c(H), is the length of a longest cycle in H. It is proved in Chen (2016) that if *H* is a 3-connected claw-free graph of order *n* with $\delta \geq 8$, then $c(H) \ge \min\{9\delta - 3, n\}$. In Li (2006), Li conjectured that every 3-connected k-regular claw-free graph H of order n has $c(H) \ge \min\{10k - 4, n\}$. Later, Li posed an open problem in Li (2008): how long is the best possible circumference for a 3-connected regular clawfree graph? In this paper, we study the circumference of 3-connected claw-free graphs without the restriction on regularity and provide a solution to the conjecture and the open problem above. We determine five families \mathcal{F}_i ($1 \le i \le 5$) of 3-connected claw-free graphs which are characterized by graphs contractible to the Petersen graph and show that if H is a 3-connected claw-free graph of order *n* with $\delta \geq 16$, then one of the following holds: (a) either $c(H) \ge \min\{10\delta - 3, n\}$ or $H \in \mathcal{F}_1$. (b) either $c(H) \ge \min\{11\delta - 7, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2$. (c) either $c(H) \ge \min\{11\delta - 3, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$. (d) either $c(H) \ge \min\{12\delta - 10, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4$. (e) if $\delta \geq 23$ then either $c(H) \geq \min\{12\delta - 7, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4 \cup \mathcal{F}_5$. This is also an improvement of the prior results in Chen (2016), Lai et al. (2016), Li et al.

(2009) and Mathews and Sumner (1985).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are finite and loopless. A graph is called a *multigraph* if it contains multiple edges. A graph without multiple edges is called a *simple graph* or simply a graph. As in [1], $\alpha'(G)$, $\kappa'(G)$ and $d_G(v)$ denote the size of a maximum matching in *G*, the edge-connectivity of *G* and the degree of a vertex *v* in *G*, respectively. The minimum degree of a graph *G* is denoted by $\delta(G)$ or δ . For a vertex $v \in V(G)$, let $E_G(v)$ be the set of edges in *G* incident with *v*. Thus, when *G* is a simple graph, $|E_G(v)| = d_G(v)$. An edge cut *X* of a graph *G* is *essential* if each of the components of *G* – *X* contains an edge. A graph *G* is *essentially k-edge-connected* if *G* is connected and does not have an essential edge cut of size less than *k*. A vertex set $U \subseteq V(G)$ is called a *covering* of *G* if every edge of *G* is incident with a vertex in *U*. The minimum number of vertices in a covering of *G* is called the *covering number* of *G* and denoted by $\beta(G)$. An edge e = uv is called a *pendant edge* if $\min\{d_G(u), d_G(v)\} = 1$.

A trail *T* is a finite sequence $T = u_0e_1u_1e_2u_2\cdots e_ru_r$, whose terms are alternately vertices and edges, with $e_i = u_{i-1}u_i$ ($1 \le i \le r$), where the edges are distinct. A trail *T* is a *closed trail* if $u_0 = u_r$ and is called a (u, v)-trail if $u = u_0$ and $v = u_r$. A trail or closed trail *T* in a graph *G* is called a *spanning trail* (ST) or a *spanning closed trail* (SCT) of *G* if V(G) = V(T) and is called a *dominating trail* (DT) or a *dominating closed trail* (DCT) if $E(G - V(T)) = \emptyset$. The family of graphs with SCTs is denoted by *SL*. A graph *G* is called a *DCT graph* if *G* has a DCT.

http://dx.doi.org/10.1016/j.disc.2017.04.010 0012-365X/© 2017 Elsevier B.V. All rights reserved.

E-mail address: chen@butler.edu.

The circumference of a graph *H*, denoted by c(H), is the length of a longest cycle in *H*. A graph *H* is *claw-free* if *H* does not contain an induced subgraph isomorphic to $K_{1,3}$. In this paper, we will be concerned with the circumference of 3-connected claw-free graphs.

In [14], Matthews and Sumner proved that every 2-connected claw-free graph *H* of order *n* has $c(H) \ge \min\{n, 2\delta + 4\}$. Li, et al. [13] proved that every 3-connected claw-free graph *H* of order *n* has $c(H) \ge \min\{n, 6\delta - 15\}$. Solving a conjecture posed in [13], we proved the following.

Theorem 1.1 ([6]). If *H* is a 3-connected claw-free graph of order *n* and $\delta \ge 8$, $c(H) \ge \min\{n, 9\delta - 3\}$.

Theorem 1.1 is best possible in the sense that if $H_r = L(G_r)$ where G_r is obtained from the Petersen graph *P* by adding r > 0 pendant edges at each vertex of *P*, then $c(H_r) = 9\delta(H_r) - 3$.

For regular claw-free graphs, Li posed the following conjecture in [11].

Conjecture 1.2 (*Li*, *Conjecture 6* [11]). Every 3-connected k-regular claw-free graph H on n vertices has $c(H) \ge \min\{10k - 4, n\}$.

In [12], Li restated the conjecture with a different lower bound on c(H).

Conjecture 1.3 (*Li*, *Conjecture 5.17* [12]). Every 3-connected k-regular claw-free graph H on n vertices has $c(H) \ge \min\{12k - 7, n\}$.

It was stated in [12] that Conjecture 1.3 was from [11]. However, Conjecture 1.2 is the only conjecture in [11]. We do not know why "10k - 4" is changed to "12k - 7" in Conjecture 1.3. Maybe it is more proper to treat them as open problems. In fact, Li posed an open problem in [12].

Problem 1.4 (Li, Problem 5.18 [12]). How long is the best possible circumference for a 3-connected regular claw-free graph?

Note that H_r mentioned above is a non-regular claw-free graph. These conjectures and the open problem suggest a more general problem: how long is the best possible circumference for a 3-connected claw-free graph H if $H \neq H_r$?

In this paper, using much improved techniques employed in [6], we provide solutions to these open problems and conjectures. Our results are given in next section.

2. Main results and Ryjáček's closure concept

For a graph *G*, the line graph of a graph *G*, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in *G* are adjacent. As we know that all line graphs are claw-free and a connected line graph $H \neq K_3$ has a unique graph *G* with H = L(G). We call *G* the preimage graph of *H*. Ryjáček [16] defined the closure cl(H) of a claw-free graph *H* to be one obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of *H* as long as this is possible, and *H* is said to be *closed* if H = cl(H).

Theorem 2.1. (Ryjáček [16]). Let H be a claw-free graph and cl(H) its closure. Then

- (a) cl(H) is well defined, and $\kappa(cl(H)) \ge \kappa(H)$;
- (b) there is a K_3 -free simple graph G such that cl(H) = L(G);
- (c) for every cycle C_0 in L(G), there exists a cycle C in H with $V(C_0) \subseteq V(C)$.

Let *P* be the Petersen graph. Let Φ_a and Φ_b be two connected K_3 -free simple graphs. Let $P(\Phi_a, \Phi_b)$ be an essentially 3-edge-connected K_3 -free simple graph obtained from *P* by replacing a vertex v_a in *P* by Φ_a and replacing a vertex v_b in *P* by Φ_b , and by adding at least r > 0 pendant edges at each vertex of $V(P) - \{v_a, v_b\}$ and subdividing *m* edges of *P* for m = 0, 1, ..., 15.

Let Π_a and Π_b be two families of K_3 -free graphs. Define $\mathcal{P}(\Pi_a, \Pi_b)$ be the family of graphs below:

 $\mathcal{P}(\Pi_a, \Pi_b) = \{G \mid G = P(\Phi_a, \Phi_b) \text{ where } \Phi_a \in \Pi_a \text{ and } \Phi_b \in \Pi_b\} \text{ (see Fig. 2.1. for examples).}$

Here is a list of families of K_3 -free graphs that will be used for Π_a or Π_b .

- Let $\mathcal{K}_{1,r}$ be the family of stars $K_{1,r}$ with $r \ge 1$ edges.
- Let $\mathcal{K}_{2,r}$ be the family of spanning connected subgraphs of $K_{2,r}$ for some $r \ge 2$.

• Let Q_t be the family of K_3 -free connected simple graphs G with $\alpha'(G) = t$.

Note that $K_{t,s} \in Q_t$ for $t \le s$ and $\mathcal{K}_{t,s} = Q_t$ for $t \in \{1, 2\}$ and $s \ge t$ (see Proposition 3.3).

For essentially 3-edge-connected K_3 -free simple graphs, we define the following families:

- $\mathcal{P}_1 = \mathcal{P}(\mathcal{K}_{1,r}, \mathcal{K}_{1,r}).$
- $\mathcal{P}_2 = \mathcal{P}(\mathcal{K}_{2,r}, \mathcal{K}_{1,r}).$
- $\mathcal{P}_3 = \mathcal{P}(\mathcal{Q}_3, \mathcal{K}_{1,r}).$
- $\mathcal{P}_4 = \mathcal{P}(\mathcal{K}_{2,r}, \mathcal{K}_{2,r}).$
- $\mathcal{P}_5 = \mathcal{P}(\mathcal{Q}_4, \mathcal{K}_{1,r}).$
- $\mathcal{P}_6 = \mathcal{P}(\mathcal{Q}_3, \mathcal{K}_{2,r}).$

For each $i (1 \le i \le 6)$, we define a family \mathcal{F}_i of 3-connected claw-free graphs according to \mathcal{P}_i : $\mathcal{F}_i = \{H : H \text{ is a 3-connected claw-free graph with } cl(H) = L(G) \text{ and } G \in \mathcal{P}_i\}.$ Here is our main result. Download English Version:

https://daneshyari.com/en/article/5776749

Download Persian Version:

https://daneshyari.com/article/5776749

Daneshyari.com