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a b s t r a c t

Let d1, d2, . . . , dk be k non-negative integers. A graph G is (d1, d2, . . . , dk)-colorable, if the
vertex set of G can be partitioned into subsets V1, V2, . . . , Vk such that the subgraph G[Vi]

induced by Vi has maximum degree at most di for i = 1, 2, . . . , k. In this paper, we prove
that every planar graph without cycles of length 4 or 9 is (1, 1, 0)-colorable.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let d1, d2, . . . , dk be k nonnegative integers. A
(d1, d2, . . . , dk)-coloring of a graph G = (V , E) is a mapping φ : V −→ {1, . . . , k} such that the subgraph G[Vi] induced by Vi
has maximum degree at most di, where Vi = {v ∈ V |φ(v) = i}. G is (d1, d2, . . . , dk)-colorable if it admits a (d1, d2, . . . , dk)-
coloring. The Four Color Theorem [1,2] says that every planar graph is (0, 0, 0, 0)-colorable; and the Three Color Theorem [8]
says that every triangle-free planar graph is (0, 0, 0)-colorable. Assuming that only three colors are allowed to color the
planar graphs, Cowen, Cowen and Woodall [6] showed that every planar graph is (2, 2, 2)-colorable; Xu [18] showed that
every planar graph with neither adjacent triangles nor 5-cycles is (1, 1, 1)-colorable.

Let Fk be the family of the planar graphs without cycles of length 4 or k (k ≥ 5). A central conjecture on 3-colorability
of planar graphs, proposed by Steinberg in 1976 [14], states that everyone in F5 is (0, 0, 0)-colorable. Motivated by the
Steinberg’s conjecture, Lih et al. [12] showed that everyone in Fk, k ∈ {5, 6, 7}, is list (1, 1, 1)-colorable; and Dong and
Xu [7] showed that the same is true for k ∈ {8, 9}. Later, Wang and Xu [16] improved these results to that every planar graph
without cycles of length 4 is list (1, 1, 1)-colorable. Also motivated by the Steinberg’s conjecture, Chang et al. [3] showed
that everyone in F5 is (4, 0, 0)- and (2, 1, 0)-colorable. Later, Hill et al., [9] showed that everyone in F5 is (3, 0, 0)-colorable;
and Hill and Yu [10] and independently Xu, Miao and Wang [20] proved that everyone in F5 is (1, 1, 0)-colorable. Recently,
Chen et al. [4] proved that everyone in F5 is (2, 0, 0)-colorable.

In 2014, Wang and Xu [15] proposed a generalized Steinberg’s conjecture as follows.

A Generalized Steinberg’s Conjecture: For every k ∈ {5, 6, 7, 8, 9}, everyone in Fk is (0, 0, 0)-colorable.
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Surprisingly, Cohen-Addad et al. [5] disproved the case k = 5, i.e., Steinberg’s conjecture is false. However, it is unknown
if any other case of the generalized Steinberg’s Conjecture is false. Below are some results supporting that the other cases in
the generalized Steinberg’s conjecture might be true.

Theorem A. (1) Every graph in F6 is (3, 0, 0)-, (1, 1, 0)-, (2, 0, 0)-colorable, see [17,19];
(2) Every graph in F7 is (3, 0, 0)-, (1, 1, 0)-, (2, 0, 0)-colorable, see [11,13,15];
(3) Every graph in F8 is (1, 1, 0)-colorable, see [15]. □

In this paper, we show the following result.

Theorem 1. Every graph in F9 is (1, 1, 0)-colorable. □

Together with previous results, Theorem 1 completes a stage conclusion as follows.

Theorem 2. For every k ∈ {5, 6, 7, 8, 9}, every graph in Fk is (1, 1, 0)-colorable. □

Thus, Theorem 2 leaves us an appealing problem as follows:

Problem 1. Is every graph in Fk, k ∈ {5, 6, 7, 8, 9}, (1, 0, 0)-colorable? □

We strongly believe that every instance of Problem 1 has a positive answer.
The rest of this section is devoted to some definitions. Call a graph G planar if it can be embedded into the plane so that

its edges meet only at their ends. Any such particular embedding of a planar graph is called a plane graph. For a plane graph
G, we use V , E, F , and δ to denote its vertex set, edge set, face set, and minimum degree, respectively. For a vertex v ∈ V ,
the degree of v in G, denoted dG(v), or simply d(v), is the number of edges incident with v in G. The neighborhood of v in
G, denoted NG(v), or simply N(v), consists of all vertices adjacent to v in G. Call v a k-vertex, or a k+-vertex, or a k−-vertex if
d(v) = k, or d(v) ≥ k, or d(v) ≤ k, respectively. An edge xy ∈ E is called a (d(x), d(y))-edge, and x is called a d(x)-neighbor of
y. For a face f ∈ F , the number of steps of the boundary of f , denoted d(f ), is called the degree of f . Call f a k-face, or a k+-face,
or a k−-face if d(f ) = k, or d(f ) ≥ k, or d(f ) ≤ k, respectively. We write f = [v1v2 . . . vk] if v1, v2, . . . , vk are consecutive
vertices on f in a cyclic order, and say that f is a (d(v1), d(v2), . . . , d(vk))-face. A k-cycle is a cycle of length k. In this paper,
a triangle is the boundary of a 3-face. Call a vertex or an edge triangular if it is incident with a triangle. Call a vertex u an
isolated neighbor of v if uv ∈ E, and uv is not triangular. A pendent 3-face of a vertex v is a 3-face which does not contain v
but contains a 3-vertex adjacent to v. If a 3-vertex v is incident with a 3-face, then its neighbor not incident with this 3-face
is called its outer neighbor. If the outer neighbor of v is a k-vertex, then we call it an outer k-neighbor of v. Finally, let C be a
cycle in G. The set of vertices lying strictly inside or outside C is denoted by int(C) or ext(C), respectively. If both int(C) and
ext(C) are not empty, then C is called a separating cycle of G. Note that Ext(C) ∩ int(C) = ∅ where Ext(C) = V (C) ∪ ext(C).

2. Reducibility

As usual, to properly color a vertex v means to assign v a color which has not been assigned to any neighbor of v. To
(1, 1, 0)-color , in short, to color , a vertex v means to properly color v with 3, or, for i ∈ {1, 2}, assigns v with i if v has at most
one neighbor colored i and the neighbor of v colored i, if any, is properly colored before coloring v. A partial (1, 1, 0)-coloring
of G is a (1, 1, 0)-coloring of a vertex induced subgraph of G. If φ is a partial (1, 1, 0)-coloring of G and A a set of colored
vertices in φ, then we define φ(A) = {φ(a)|a ∈ A}. Note that φ(A) may be a multi-set of colors.

Suppose Theorem 1 is false. Let G = (V , E) be a counterexample to Theorem 1 with the fewest vertices. Clearly G is
connected. Embedding G into the plane, we get a plane graph G = (V , E, F ). Since G has no 4-cycle, G has no adjacent
triangles. Below are structural properties of G. Some of them have been obtained in some earlier papers. Here we reprove
them for self-containment.

Lemma 1. δ(G) ≥ 3.

Proof. Suppose to the contrary that δ(G) ≤ 2 . Let v be a vertex of degree at most 2 in G. By the minimality of G, G′
= G − v

admits a (1, 1, 0)-coloring φ. Since d(v) ≤ 2, we can properly color v with a color in {1, 2, 3} that has not been assigned to
any neighbor of v, giving a (1, 1, 0)-coloring of G, a contradiction. □

2.1. Structure involving 3-vertices

Lemma 2. A 3-vertex v in G has at most one 3-neighbor.

Proof. Suppose v has two 3-neighbors, say v1 and v2. Let v3 be the remaining neighbor of v. By the minimality of G,
G′

= G − {v, v1, v2} admits a (1, 1, 0)-coloring φ. Clearly we can properly color v1 and v2 in turn. We may assume that
φ(N(v)) = {1, 2, 3} since otherwise we could properly color v. Now we can color v with a color in {1, 2} \ {φ(v3)}, giving a
(1, 1, 0)-coloring of G, a contradiction. □
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