Improving bounds on the diameter of a polyhedron in high dimensions

Noriyoshi Sukegawa
Department of Information and System Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

A R T I CLE INFO

Article history:

Received 25 February 2016
Received in revised form 1 April 2017
Accepted 3 April 2017
Available online 16 May 2017

Keywords:

Diameter
Polyhedra
High dimension
Computer-assisted method

Abstract

In 1992, Kalai and Kleitman proved that the diameter of a d-dimensional polyhedron with n facets is at most $n^{2+\log _{2} d}$. In 2014, Todd improved the Kalai-Kleitman bound to $(n-d)^{\log _{2} d}$. We improve the Todd bound to $(n-d)^{-1+\log _{2} d}$ for $n \geq d \geq 7,(n-d)^{-2+\log _{2} d}$ for $n \geq d \geq 37$, and $(n-d)^{-3+\log _{2} d+\mathcal{O}(1 / d)}$ for $n \geq d \geq 1$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The diameter $\delta(P)$ of a polyhedron P is the smallest integer k such that every pair of vertices of P can be connected by a path using at most k edges of P. The diameter is a fundamental feature of a polyhedron and is closely related to the theoretical complexity of the simplex algorithm; the number of pivots needed, in the worst case, by the simplex algorithm to solve a linear programming problem on a polyhedron P is bounded from below by $\delta(P)$.

One of the outstanding open problems in the areas of polyhedral combinatorics and operations research is to understand the behavior of $\Delta(d, n)$, the maximum possible diameter of a d-dimensional polyhedron with n facets. In 1957, Warren M. Hirsch asked whether $\Delta(d, n) \leq n-d$. While this inequality was shown to hold for $d \leq 3$ [13-15], Klee and Walkup [16] disproved it for unbounded polyhedra when $d \geq 4$ in 1967, and Santos [25] finally disproved it for bounded polyhedra, i.e., for polytopes, in 2012. Santos' lower bound, later refined by Matschke, Santos, and Weibel [20], however, violates $n-d$ by only 5 percent. For the history of the Hirsch conjecture, see [26].

The first subexponential upper bound on $\Delta(d, n)$ is due to Kalai and Kleitman [11] who proved in 1992 that $\Delta(d, n)$ is at most $n^{2+\log _{2} d}$. The key ingredient for their proof is a recursive inequality on $\Delta(d, n)$, which we call the Kalai-Kleitman inequality. The Kalai-Kleitman inequality was later extended to more general settings such as connected layer families by Eisenbrand et al. [8], and subset partition graphs by Gallagher and Kim [9]. For the corresponding lower bounds, we refer to $[8,12]$.

Refining Kalai and Kleitman's approach, Todd [28] showed in 2014 that $\Delta(d, n) \leq(n-d)^{\log _{2} d}$ for $n \geq d \geq 1$. The Todd bound is tight for $d \leq 2$ and coincides with the true value $\Delta(d, d)$, i.e., 0 , when $n=d$. Sukegawa and Kitahara [27] slightly improved the Todd bound to $(n-d)^{\log _{2}(d-1)}$ for $n \geq d \geq 3$. This upper bound is no longer valid for $d \leq 2$, however, coincides with the Hirsch bound of $n-d$, and is tight for $d=3$. Gallagher and Kim [10] proved that the same bound holds for the diameter of normal simplicial complexes, and, on the other hand, improved it for polytopes.

[^0]
1.1. Main results

In this paper, we improve the Todd bound in high dimensions as follows:

Theorem 1.

(a) $\Delta(d, n) \leq(n-d)^{\log _{2}(d / 2)}=(n-d)^{-1+\log _{2} d}$ for $n \geq d \geq 7$,
(b) $\Delta(d, n) \leq(n-d)^{\log _{2}(d / 4)}=(n-d)^{-2+\log _{2} d}$ for $n \geq d \geq 37$, and
(c) $\Delta(d, n) \leq(n-d)^{\log _{2}(16+d / 8)}=(n-d)^{-3+\log _{2} d+\mathcal{O}(1 / d)}$ for $n \geq d \geq 1$.

Inequalities (a) and (b) hold for, respectively, $d \geq 7$ and $d \geq 37$, and improve the Todd bound by, respectively, one and two orders of magnitude. Inequality (c) holds for any d, and improves the Todd bound for $d \geq 19$. Note that $\log _{2}\left(16+\frac{d}{8}\right)=$ $\log _{2}(d)-3+O\left(\frac{1}{d}\right)$ since $\log _{e}(1+x) \leq x$ for $x \geq 0$. Thus, Inequality (c) improves the Todd bound by roughly three orders of magnitude for sufficiently large d.

1.2. Our approach

As in $[11,27,28]$, each inequality stated in Theorem 1 will be proved via an induction on d based on the Kalai-Kleitman inequality. In contrast to [11,27,28], we introduce a way of strengthening Todd's analysis for the inductive step in high dimensions. In this approach, however, we need to check a large number of pairs (d, n) for the base case. To address this issue, we devise a computer-assisted method which is based on the two previously known upper bounds on $\Delta(d, n)$:
(i) $\tilde{\Delta}(d, n)$, an implicit upper bound on $\Delta(d, n)$ computed recursively from the Kalai-Kleitman inequality,
(ii) the generalized Larman bound implying $\Delta(d, n) \leq 2^{d-3} n$.

The Larman bound of $2^{d-3} n$ was originally proved for bounded polyhedra [19], and improved to $\frac{2 n}{3} 2^{d-3}$ by Barnette [1]. Considering a more generalized setting, Eisenbrand et al. [8] proved a bound of $2^{d-1} n$ in 2010, before Labbé, Manneville, and Santos [18] established in 2015 an upper bound on the diameter of simplicial complexes implying $\Delta(d, n) \leq 2^{d-3} n$.

1.3. Related work

It should be noted that although this paper deals with only the two basic parameters d and n, i.e., the dimension and the number of facets of a polyhedron, there have been studies on other parameters.

A well-known example is the maximum integer coordinate of lattice polytopes. In [17], Kleinschmidt and Onn proved that the diameter of a lattice polytope whose vertices are drawn from $\{0,1, \ldots, k\}^{d}$ is at most $k d$. This is an extension of Naddef [24] showing that the diameter of a $0-1$ polytope is at most d. In 2015, Del Pia and Michini [4] improved the Kleinschmidt-Onn bound to $k d-\left\lceil\frac{d}{2}\right\rceil$ for $k \geq 2$ and showed that it is tight for $k=2$, before Deza and Pournin [6] further improved the bound to $k d-\left\lceil\frac{2 d}{3}\right\rceil-(k-3)$ for $k \geq 3$. On the other hand, considering Minkowski sums of primitive lattice vectors, in [5], Deza, Manoussakis, and Onn provided a lower bound of $\left\lfloor\frac{(k+1) d}{2}\right\rfloor$ for $k<d$.

Another well-studied parameter would be Δ_{A} which is defined as the largest absolute value of a subdeterminant of the constraint matrix A associated to a polyhedron. Bonifas et al. [2] strengthened and extended the Dyer and Frieze upper bound [7] holding for totally unimodular case; i.e., when $\Delta_{A}=1$. Complexity analyses based on Δ_{A} for the shadow vertex algorithm and the primal-simplex based Tardos' algorithm were proposed by Dadush and Hähnle [3], and Mizuno, Sukegawa, and Deza $[22,23]$, respectively.

We also note that there are studies that attempt to understand the behavior of $\Delta(d, n)$ when the number of facets is sufficiently large. Gallagher and Kim [10] provided tail-polynomial upper bounds on the diameter of a normal simplicial complex; specifically, they showed that the diameter is bounded from above by a polynomial in n when n is sufficiently large. An alternative simpler proof for such tail-polynomial upper bounds can be found in Mizuno and Sukegawa [21]. In contrast, by assuming that d is large, rather than n, we strengthen the previous analyses to yield the improved upper bounds.

2. Preliminaries

A polyhedron $P \subseteq \mathbb{R}^{d}$ is an intersection of a finite number of closed halfspaces, and $\operatorname{dim}(P)$ denotes the dimension of the affine hull of P. For a polyhedron P, an inequality $a^{\top} x \leq \beta$ is said to be valid for P if it is satisfied by every $x \in P$. We say that F is a face of P if there is a valid inequality $a^{\top} x \leq \beta$ for P which satisfies $F=P \cap\left\{x \in \mathbb{R}^{d}: a^{\top} x=\beta\right\}$. In particular, 0-, 1-, and $(\operatorname{dim}(P)-1)$-dimensional faces are, respectively, referred to as vertices, edges, and facets.

The diameter $\delta(P)$ of a polyhedron P is the smallest integer k such that every pair of vertices of P can be connected by a path using at most k edges of P. In this paper, we are concerned with upper bounds on $\Delta(d, n)$, the maximum possible diameter of a d-dimensional polyhedron with n facets. Lemma 1 states the Kalai-Kleitman inequality on which our approach is based.

Lemma 1 (Kalai-Kleitman Inequality [11]). For $\left\lfloor\frac{n}{2}\right\rfloor \geq d \geq 2$,

$$
\Delta(d, n) \leq \Delta(d-1, n-1)+2 \Delta\left(d,\left\lfloor\frac{n}{2}\right\rfloor\right)+2
$$

Download Persian Version:

https://daneshyari.com/article/5776753

Daneshyari.com

[^0]: E-mail address: sukegawa@ise.chuo-u.ac.jp.

