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1. Introduction

The diameter §(P) of a polyhedron P is the smallest integer k such that every pair of vertices of P can be connected by a
path using at most k edges of P. The diameter is a fundamental feature of a polyhedron and is closely related to the theoretical
complexity of the simplex algorithm; the number of pivots needed, in the worst case, by the simplex algorithm to solve a
linear programming problem on a polyhedron P is bounded from below by §(P).

One of the outstanding open problems in the areas of polyhedral combinatorics and operations research is to understand
the behavior of A(d, n), the maximum possible diameter of a d-dimensional polyhedron with n facets. In 1957, Warren M.
Hirsch asked whether A(d, n) < n — d. While this inequality was shown to hold for d < 3 [13-15], Klee and Walkup [16]
disproved it for unbounded polyhedra when d > 4 in 1967, and Santos [25] finally disproved it for bounded polyhedra,
i.e., for polytopes, in 2012. Santos’ lower bound, later refined by Matschke, Santos, and Weibel [20], however, violates n — d
by only 5 percent. For the history of the Hirsch conjecture, see [26].

The first subexponential upper bound on A(d, n) is due to Kalai and Kleitman [11] who proved in 1992 that A(d, n) is
at most n®*1°82¢, The key ingredient for their proof is a recursive inequality on A(d, n), which we call the Kalai-Kleitman
inequality. The Kalai-Kleitman inequality was later extended to more general settings such as connected layer families by
Eisenbrand et al. [8], and subset partition graphs by Gallagher and Kim [9]. For the corresponding lower bounds, we refer
to [8,12].

Refining Kalai and Kleitman’s approach, Todd [28] showed in 2014 that A(d, n) < (n — d)'°®2¢ for n > d > 1. The Todd
bound is tight for d < 2 and coincides with the true value A(d, d), i.e., 0, when n = d. Sukegawa and Kitahara [27] slightly
improved the Todd bound to (n — d)'°%2¢=" for n > d > 3. This upper bound is no longer valid for d < 2, however, coincides
with the Hirsch bound of n — d, and is tight for d = 3. Gallagher and Kim [10] proved that the same bound holds for the
diameter of normal simplicial complexes, and, on the other hand, improved it for polytopes.
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1.1. Main results

In this paper, we improve the Todd bound in high dimensions as follows:

Theorem 1.

(@) A(d,n)<(n—d)ed?2 =m—d%dforn>d>7,

(b) A(d, n) < (n — d)°82¢/4 = (n — d)~2H°%2 for n > d > 37, and

(c) A(d,n) < (n— d)es206+d/8) — (n — g)=3+ogd+00/d) for np > d > 1.

Inequalities (a) and (b) hold for, respectively, d > 7 and d > 37, and improve the Todd bound by, respectively, one and two
orders of magnitude. Inequality (c) holds for any d, and improves the Todd bound for d > 19. Note that log, (16 + g) =
log,(d)—3+40 (1) since log,(1 4 x) < x for x > 0. Thus, Inequality (c) improves the Todd bound by roughly three orders of
magnitude for su%f'ciently large d.

1.2. Our approach

As in [11,27,28], each inequality stated in Theorem 1 will be proved via an induction on d based on the Kalai-Kleitman
inequality. In contrast to [11,27,28], we introduce a way of strengthening Todd’s analysis for the inductive step in high
dimensions. In this approach, however, we need to check a large number of pairs (d, n) for the base case. To address this
issue, we devise a computer-assisted method which is based on the two previously known upper bounds on A(d, n):

(i) A(d, n), an implicit upper bound on A(d, n) computed recursively from the Kalai-Kleitman inequality,
(i) the generalized Larman bound implying A(d, n) < 2¢3n.

The Larman bound of 2¢~3n was originally proved for bounded polyhedra [19], and improved to %“2‘1*3 by Barnette [1].
Considering a more generalized setting, Eisenbrand et al. [8] proved a bound of 2¢~"n in 2010, before Labbé, Manneville, and
Santos [18] established in 2015 an upper bound on the diameter of simplicial complexes implying A(d, n) < 2¢~3n.

1.3. Related work

It should be noted that although this paper deals with only the two basic parameters d and n, i.e., the dimension and the
number of facets of a polyhedron, there have been studies on other parameters.

A well-known example is the maximum integer coordinate of lattice polytopes. In [17], Kleinschmidt and Onn proved
that the diameter of a lattice polytope whose vertices are drawn from {0, 1, ..., k}¢ is at most kd. This is an extension
of Naddef [24] showing that the diameter of a 0-1 polytope is at most d. In 2015, Del Pia and Michini [4] improved the
Kleinschmidt-Onn bound to kd — (%1 for k > 2 and showed that it is tight for k = 2, before Deza and Pournin [6] further
improved the bound to kd — (23—"] — (k — 3) for k > 3. On the other hand, considering Minkowski sums of primitive lattice

vectors, in [5], Deza, Manoussakis, and Onn provided a lower bound of L@J fork < d.

Another well-studied parameter would be A, which is defined as the largest absolute value of a subdeterminant of the
constraint matrix A associated to a polyhedron. Bonifas et al. [2] strengthened and extended the Dyer and Frieze upper
bound [7] holding for totally unimodular case; i.e., when A, = 1. Complexity analyses based on A4 for the shadow vertex
algorithm and the primal-simplex based Tardos’ algorithm were proposed by Dadush and Hihnle [3], and Mizuno, Sukegawa,
and Deza [22,23], respectively.

We also note that there are studies that attempt to understand the behavior of A(d, n) when the number of facets is
sufficiently large. Gallagher and Kim [10] provided tail-polynomial upper bounds on the diameter of a normal simplicial
complex; specifically, they showed that the diameter is bounded from above by a polynomial in n when n is sufficiently large.
An alternative simpler proof for such tail-polynomial upper bounds can be found in Mizuno and Sukegawa [21]. In contrast,
by assuming that d is large, rather than n, we strengthen the previous analyses to yield the improved upper bounds.

2. Preliminaries

A polyhedron P € R? is an intersection of a finite number of closed halfspaces, and dim(P) denotes the dimension of the
affine hull of P. For a polyhedron P, an inequality a' x < 8 is said to be valid for P if it is satisfied by every x € P. We say that
F is a face of P if there is a valid inequality a'x < B for P which satisfies F = P N {x € R¢ : a"x = B)}. In particular, 0-, 1-,
and (dim(P) — 1)-dimensional faces are, respectively, referred to as vertices, edges, and facets.

The diameter 5(P) of a polyhedron P is the smallest integer k such that every pair of vertices of P can be connected by
a path using at most k edges of P. In this paper, we are concerned with upper bounds on A(d, n), the maximum possible
diameter of a d-dimensional polyhedron with n facets. Lemma 1 states the Kalai-Kleitman inequality on which our approach
is based.

Lemma 1 (Kalai-Kleitman Inequality [11]). For |5 ] >d > 2,

Adn) < Ad—1,n—1)+2A (d, {gJ) ¥
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