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a b s t r a c t

In 1992, Kalai and Kleitman proved that the diameter of a d-dimensional polyhedronwith n
facets is at most n2+log2d. In 2014, Todd improved the Kalai–Kleitman bound to (n− d)log2d.
We improve the Todd bound to (n−d)−1+log2d for n ≥ d ≥ 7, (n−d)−2+log2d for n ≥ d ≥ 37,
and (n − d)−3+log2d+O(1/d) for n ≥ d ≥ 1.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The diameter δ(P) of a polyhedron P is the smallest integer k such that every pair of vertices of P can be connected by a
path using atmost k edges of P . The diameter is a fundamental feature of a polyhedron and is closely related to the theoretical
complexity of the simplex algorithm; the number of pivots needed, in the worst case, by the simplex algorithm to solve a
linear programming problem on a polyhedron P is bounded from below by δ(P).

One of the outstanding open problems in the areas of polyhedral combinatorics and operations research is to understand
the behavior of ∆(d, n), the maximum possible diameter of a d-dimensional polyhedron with n facets. In 1957, Warren M.
Hirsch asked whether ∆(d, n) ≤ n − d. While this inequality was shown to hold for d ≤ 3 [13–15], Klee and Walkup [16]
disproved it for unbounded polyhedra when d ≥ 4 in 1967, and Santos [25] finally disproved it for bounded polyhedra,
i.e., for polytopes, in 2012. Santos’ lower bound, later refined by Matschke, Santos, and Weibel [20], however, violates n − d
by only 5 percent. For the history of the Hirsch conjecture, see [26].

The first subexponential upper bound on ∆(d, n) is due to Kalai and Kleitman [11] who proved in 1992 that ∆(d, n) is
at most n2+log2d. The key ingredient for their proof is a recursive inequality on ∆(d, n), which we call the Kalai–Kleitman
inequality. The Kalai–Kleitman inequality was later extended to more general settings such as connected layer families by
Eisenbrand et al. [8], and subset partition graphs by Gallagher and Kim [9]. For the corresponding lower bounds, we refer
to [8,12].

Refining Kalai and Kleitman’s approach, Todd [28] showed in 2014 that ∆(d, n) ≤ (n − d)log2d for n ≥ d ≥ 1. The Todd
bound is tight for d ≤ 2 and coincides with the true value ∆(d, d), i.e., 0, when n = d. Sukegawa and Kitahara [27] slightly
improved the Todd bound to (n− d)log2(d−1) for n ≥ d ≥ 3. This upper bound is no longer valid for d ≤ 2, however, coincides
with the Hirsch bound of n − d, and is tight for d = 3. Gallagher and Kim [10] proved that the same bound holds for the
diameter of normal simplicial complexes, and, on the other hand, improved it for polytopes.
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1.1. Main results

In this paper, we improve the Todd bound in high dimensions as follows:

Theorem 1.
(a) ∆(d, n) ≤ (n − d)log2(d/2) = (n − d)−1+log2d for n ≥ d ≥ 7,
(b) ∆(d, n) ≤ (n − d)log2(d/4) = (n − d)−2+log2d for n ≥ d ≥ 37, and
(c) ∆(d, n) ≤ (n − d)log2(16+d/8) = (n − d)−3+log2d+O(1/d) for n ≥ d ≥ 1.

Inequalities (a) and (b) hold for, respectively, d ≥ 7 and d ≥ 37, and improve the Todd bound by, respectively, one and two
orders of magnitude. Inequality (c) holds for any d, and improves the Todd bound for d ≥ 19. Note that log2

(
16 +

d
8

)
=

log2(d)− 3+ O
( 1
d

)
since loge(1+ x) ≤ x for x ≥ 0. Thus, Inequality (c) improves the Todd bound by roughly three orders of

magnitude for sufficiently large d.

1.2. Our approach

As in [11,27,28], each inequality stated in Theorem 1 will be proved via an induction on d based on the Kalai–Kleitman
inequality. In contrast to [11,27,28], we introduce a way of strengthening Todd’s analysis for the inductive step in high
dimensions. In this approach, however, we need to check a large number of pairs (d, n) for the base case. To address this
issue, we devise a computer-assisted method which is based on the two previously known upper bounds on ∆(d, n):

(i) ∆̃(d, n), an implicit upper bound on ∆(d, n) computed recursively from the Kalai–Kleitman inequality,
(ii) the generalized Larman bound implying ∆(d, n) ≤ 2d−3n.

The Larman bound of 2d−3n was originally proved for bounded polyhedra [19], and improved to 2n
3 2d−3 by Barnette [1].

Considering a more generalized setting, Eisenbrand et al. [8] proved a bound of 2d−1n in 2010, before Labbé, Manneville, and
Santos [18] established in 2015 an upper bound on the diameter of simplicial complexes implying ∆(d, n) ≤ 2d−3n.

1.3. Related work

It should be noted that although this paper deals with only the two basic parameters d and n, i.e., the dimension and the
number of facets of a polyhedron, there have been studies on other parameters.

A well-known example is the maximum integer coordinate of lattice polytopes. In [17], Kleinschmidt and Onn proved
that the diameter of a lattice polytope whose vertices are drawn from {0, 1, . . . , k}d is at most kd. This is an extension
of Naddef [24] showing that the diameter of a 0-1 polytope is at most d. In 2015, Del Pia and Michini [4] improved the
Kleinschmidt–Onn bound to kd − ⌈

d
2⌉ for k ≥ 2 and showed that it is tight for k = 2, before Deza and Pournin [6] further

improved the bound to kd − ⌈
2d
3 ⌉ − (k − 3) for k ≥ 3. On the other hand, considering Minkowski sums of primitive lattice

vectors, in [5], Deza, Manoussakis, and Onn provided a lower bound of ⌊ (k+1)d
2 ⌋ for k < d.

Another well-studied parameter would be ∆A which is defined as the largest absolute value of a subdeterminant of the
constraint matrix A associated to a polyhedron. Bonifas et al. [2] strengthened and extended the Dyer and Frieze upper
bound [7] holding for totally unimodular case; i.e., when ∆A = 1. Complexity analyses based on ∆A for the shadow vertex
algorithmand the primal-simplex based Tardos’ algorithmwere proposed byDadush andHähnle [3], andMizuno, Sukegawa,
and Deza [22,23], respectively.

We also note that there are studies that attempt to understand the behavior of ∆(d, n) when the number of facets is
sufficiently large. Gallagher and Kim [10] provided tail-polynomial upper bounds on the diameter of a normal simplicial
complex; specifically, they showed that the diameter is bounded from above by a polynomial in nwhen n is sufficiently large.
An alternative simpler proof for such tail-polynomial upper bounds can be found in Mizuno and Sukegawa [21]. In contrast,
by assuming that d is large, rather than n, we strengthen the previous analyses to yield the improved upper bounds.

2. Preliminaries

A polyhedron P ⊆ Rd is an intersection of a finite number of closed halfspaces, and dim(P) denotes the dimension of the
affine hull of P . For a polyhedron P , an inequality a⊤x ≤ β is said to be valid for P if it is satisfied by every x ∈ P . We say that
F is a face of P if there is a valid inequality a⊤x ≤ β for P which satisfies F = P ∩ {x ∈ Rd

: a⊤x = β}. In particular, 0-, 1-,
and (dim(P) − 1)-dimensional faces are, respectively, referred to as vertices, edges, and facets.

The diameter δ(P) of a polyhedron P is the smallest integer k such that every pair of vertices of P can be connected by
a path using at most k edges of P . In this paper, we are concerned with upper bounds on ∆(d, n), the maximum possible
diameter of a d-dimensional polyhedron with n facets. Lemma 1 states the Kalai–Kleitman inequality on which our approach
is based.

Lemma 1 (Kalai–Kleitman Inequality [11]). For
⌊ n

2

⌋
≥ d ≥ 2,

∆(d, n) ≤ ∆(d − 1, n − 1) + 2∆
(
d,
⌊n
2

⌋)
+ 2.
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