Poisson approximation of counts of induced subgraphs in random intersection graphs

CrossMark

Katarzyna Rybarczyk ${ }^{\text {a }}$, Dudley Stark ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614, Poznań, Poland
${ }^{\text {b }}$ School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom

ARTICLE INFO

Article history:

Received 5 December 2015
Received in revised form 12 December 2016
Accepted 13 April 2017
Available online 16 May 2017

Keywords:

Stein's method
Poisson approximation
Random intersection graphs

Abstract

Random intersection graphs are characterised by three parameters: n, m and p, where n is the number of vertices, m is the number of objects, and p is the probability that a given object is associated with a given vertex. Two vertices in a random intersection graph are adjacent if and only if they have an associated object in common. When $m=\left\lfloor n^{\alpha}\right\rfloor$ for constant α, we provide a condition, called strictly α-balanced, for the Poisson convergence of the number of induced copies of a fixed subgraph.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The random intersection graph $\mathcal{G}(n, m, p)$ is a probability distribution on labelled graphs. The set of vertices of the random intersection graph \mathcal{V} is of size $|\mathcal{V}|=n$ and a second set \mathcal{W} of size $|\mathcal{W}|=m$, called the set of objects, is used to determine the adjacencies in the graph. Each vertex $v \in \mathcal{V}$ is associated with a set of objects $\mathcal{W}_{v} \subseteq \mathcal{W}$ and two vertices $v_{1}, v_{2} \in \mathcal{V}$ are adjacent if and only if $\mathcal{W}_{v_{1}} \cap \mathcal{W}_{v_{2}} \neq \emptyset$. The randomness in the graph comes by setting $\mathbb{P}\left\{w \in \mathcal{W}_{v}\right\}=p$ independently for all $w \in \mathcal{W}, v \in \mathcal{V}$. The preceding description characterises the random intersection graph denoted by $\mathcal{G}(n, m, p)$. The model $\mathcal{G}(n, m, p)$ was introduced in [6].

Let H_{0} be a given graph on $h \geq 2$ vertices and with at least one edge and let $K_{\mathcal{V}}$ denote the complete graph on the vertex set \mathcal{V}. Let \mathcal{H}_{0} denote the set of subgraphs of $K_{\mathcal{V}}$ isomorphic to H_{0}. A copy $H \in \mathcal{H}_{0}$ is induced in $\mathcal{G}(n, m, p)$ if all of its edges are edges in $\mathcal{G}(n, m, p)$ and none of its non-edges are edges in $\mathcal{G}(n, m, p)$. In this paper we find conditions on H_{0}, n, m and p which imply that the number of induced copies of H_{0} in $\mathcal{G}(n, m, p)$ has an approximately Poisson distribution.

We denote the number of induced copies of H_{0} in $\mathcal{G}(n, m, p)$ by $X=X\left(H_{0}\right)$. In order to facilitate our Poisson approximation of the distribution of X, we will express X as a sum of indicator random variables. Given an integer N, define the set $[N]$ to be $[N]=\{1, \ldots, N\}$ and define aut $\left(H_{0}\right)$ to be the set of automorphisms of H_{0}. The number of subgraphs of $K_{\mathcal{V}}$ isomorphic to H_{0} is

$$
N_{n}=\left|\mathcal{H}_{0}\right|=\binom{n}{h} \frac{h!}{\left|\operatorname{aut}\left(H_{0}\right)\right|}
$$

and we may index the subgraphs in \mathcal{H}_{0} by

$$
\mathcal{H}_{0}=\left\{H_{i}: i \in\left[N_{n}\right]\right\} .
$$

[^0]We decompose X as

$$
\begin{equation*}
X=\sum_{i \in\left[N_{n}\right]} X_{i} \tag{1}
\end{equation*}
$$

where X_{i} is the indicator random variable of the event $\left\{H_{i}\right.$ is induced in $\left.\mathcal{G}(n, m, p)\right\}$. The intention is that the X_{i} 's should be approximately independent and therefore X should approach a Poisson distribution as $n \rightarrow \infty$ for appropriate choices of m and p.

The total variation distance between a random variable taking nonnegative integer values and a random variable P_{λ} with the Poisson distribution with parameter λ is defined to be

$$
d_{T V}\left(X, P_{\lambda}\right)=\frac{1}{2} \sum_{k=0}^{\infty}\left|\mathbb{P}\{X=k\}-e^{-\lambda} \lambda^{k} / k!\right|
$$

As was done in $[6,8]$, we parametrise $m=m(n)$ by

$$
\begin{equation*}
m=\left\lfloor n^{\alpha}\right\rfloor \tag{2}
\end{equation*}
$$

for some constant $\alpha>0$. Our method of proof will be to apply Stein's method to show that $d_{T V}\left(X, P_{\lambda}\right) \rightarrow 0$ as $n \rightarrow \infty$ under suitable conditions.

Poisson approximation for the number of induced copies of subgraphs has already been studied in detail for the Erdős-Rényi model of random graphs, in which edges appear independently and with identical probability \hat{p} (see Chapter 6 of [4]). Let H_{0} be a graph with e edges and h vertices. Let $V\left(H_{0}\right)$ and $E\left(H_{0}\right)$ be the vertex and edge sets of H_{0}, respectively. Given $S \subseteq V\left(H_{0}\right)$, we define $E_{S}\left(H_{0}\right)$ to be the set of edges of H_{0} having both vertices in S. A graph H_{0} is called strictly balanced if

$$
\begin{equation*}
\max _{\emptyset \subseteq S \subseteq V\left(H_{0}\right)} \frac{\left|E_{S}\left(H_{0}\right)\right|}{|S|}<\frac{e}{h} \tag{3}
\end{equation*}
$$

Let $W=W\left(H_{0}\right)$ denote the number of not necessarily induced copies of H_{0} in $\mathcal{G}(n, \hat{p})$ and let

$$
\lambda=\lambda\left(H_{0}\right)=\mathbb{E}\left(W\left(H_{0}\right)\right)=\binom{n}{h} \frac{h!}{\left|\operatorname{aut}\left(H_{0}\right)\right|} \hat{p}^{e}
$$

Define $\kappa=\kappa\left(H_{0}\right)$ by

$$
\kappa=\min _{\emptyset \subsetneq S \subseteq V\left(H_{0}\right)}\left|E_{S}\left(H_{0}\right)\right|\left(\frac{|S|}{\left|E_{S}\left(H_{0}\right)\right|}-\frac{h}{e}\right)
$$

Bollobás [2] shows Poisson convergence of W through the method of moments. Theorem 5.B of [1] gives the bound

$$
d_{\mathrm{TV}}\left(W, P_{\lambda}\right)= \begin{cases}O(1) \lambda^{1-1 / e} n^{-\kappa} & \text { if } \lambda \geq 1 \tag{4}\\ O(1) \lambda n^{-\kappa} & \text { if } \lambda<1\end{cases}
$$

When \hat{p} is such that $\lambda \rightarrow \lambda_{0}$ for a constant λ_{0}, then (4) implies that the distribution of W converges in total variation distance to a Poisson Po $\left(\lambda_{0}\right)$ distribution. That is not the case for subgraphs which are not strictly balanced.

The only subgraphs for which the asymptotic distribution of $X\left(H_{0}\right)$ has been determined for $\mathcal{G}(n, m, p)$ are $H_{0}=K_{h}$, the complete graphs on h vertices, in [8], in which $X\left(K_{h}\right)$ was shown to have a limiting Poisson distribution at the threshold for the appearance of K_{h}. Theorem 1 from [8] for complete graphs is the kind of result we have in mind to extend to general H_{0}. For a constant $c>0$, we parametrise $p=p(n)$ by

$$
p(n) \sim \begin{cases}c n^{-1} m^{-\frac{1}{h}} & \text { for } 0<\alpha<\frac{2 h}{h-1} \tag{5}\\ c n^{-\frac{h+1}{h-1}} & \text { for } \alpha=\frac{2 h}{h-1} \\ c n^{-\frac{1}{h-1}} m^{-\frac{1}{2}} & \text { for } \alpha>\frac{2 h}{h-1}\end{cases}
$$

We focus on asymptotic values thus we will use standard Landau notation $O(\cdot), o(\cdot), \Omega(\cdot)$, \sim, and \asymp as in [4]. The following theorem was proved in [8].

Theorem 1. Let $\mathcal{G}(n, m, p)$ be a random intersection graph defined with m and p given in terms of n by (2) and (5) and let $h \geq 3$ be a fixed integer. Let $X\left(K_{h}\right)$ be the random variable counting the number of instances of K_{h} in $\mathcal{G}(n, m, p)$.
(i) If $\alpha<\frac{2 h}{h-1}$, then $\lambda_{n}=\mathbb{E} X\left(K_{h}\right) \sim c^{h} / h$! and

$$
d_{T V}\left(X\left(K_{h}\right), P_{\lambda_{n}}\right)=O\left(n^{-\frac{\alpha}{h}}\right)
$$

https://daneshyari.com/en/article/5776756

Download Persian Version:

https://daneshyari.com/article/5776756

Daneshyari.com

[^0]: E-mail addresses: kryba@amu.edu.pl (K. Rybarczyk), d.s.stark@qmul.ac.uk (D. Stark).

