Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Some more uniformly resolvable designs with block sizes 2 and 4

Hengjia Wei^a, Gennian Ge^{a,b,*}

^a School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China
^b Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048, China

ARTICLE INFO

Article history: Received 11 September 2016 Received in revised form 24 April 2017 Accepted 26 April 2017

Keywords: Uniformly resolvable design Resolvable group divisible design Frame

ABSTRACT

A uniformly resolvable design (URD) is a resolvable design in which each parallel class contains blocks of only one block size k. Such a class is denoted k-pc and for a given k the number of k-pcs is denoted r_k . The number of points of the URD is denoted by v. In the literature, the existence of URDs of block sizes k_1 and k_2 with $\{k_1, k_2\} \in \{\{2, 3\}, \{2, 4\}, \{3, 4\}\}$ has been studied with much efforts. For $\{k_1, k_2\} = \{2, 3\}$ or $\{3, 4\}$, the existence spectra have been determined completely, while for $\{k_1, k_2\} = \{2, 4\}$ there are still 1338 undetermined pairs of (v, r_2) .

In this paper we continue the study on the existence of URDs of block sizes 2 and 4. We improve the known results by reducing the number of open cases from 1338 to 16. In addition, we prove that there exist 4-RGDDs of types 2^{178} , 2^{250} and 2^{334} .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let v and λ be positive integers, and let K and M be two sets of positive integers. A group divisible design, denoted GDD(K, M; v), is a triple (X, G, B) where X is a set of v points, G is a partition of X into groups, and B is a collection of subsets of X, called *blocks*, such that

- 1. $|B| \in K$ for each $B \in \mathcal{B}$,
- 2. $|G| \in M$ for each $G \in \mathcal{G}$,
- 3. $|B \cap G| \le 1$ for each $B \in \mathcal{B}$ and each $G \in \mathcal{G}$, and
- 4. each pair of elements of *X* from distinct groups is contained in exactly one block.

If $K = \{k\}$, respectively $M = \{m\}$, then the GDD(K, M; v) is simply denoted GDD(k, M; v), respectively GDD(K, m; v). A GDD(K, 1; v) is called a *pairwise balanced design* and denoted PBD(K; v). A GDD(k, m; mk) is called a *transversal design* and denoted TD(k, m). We usually use an "exponential" notation to describe the multiset M: a K-GDD of type $g_1^{u_1}g_2^{u_2} \dots g_s^{u_s}$ is a GDD in which every block has size from the set K and in which there are u_i groups of size $g_i, i = 1, 2, \dots, s$.

In a GDD(K, M; v) (X, G, B) a *parallel class* is a set of blocks, which partitions X. If B can be partitioned into parallel classes, then the GDD(K, M; v) is said to be *resolvable* and denoted RGDD(K, M; v). Analogously, a resolvable PBD(K; v) is denoted RPBD(K; v). A parallel class is said to be *uniform* if it contains blocks of only one size k (k-pc). If all parallel classes of an RPBD(K; v) are uniform, the design is said to be *uniformly resolvable*. Here, a uniformly resolvable design RPBD(K; v) is denoted URD(K; v). In a URD(K; v) the number of parallel classes with blocks of size k is denoted $r_k, k \in K$.

http://dx.doi.org/10.1016/j.disc.2017.04.021 0012-365X/© 2017 Elsevier B.V. All rights reserved.

CrossMark

^{*} Corresponding author at: School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China. *E-mail address:* gnge@zju.edu.cn (G. Ge).

In [18], Rees introduced the notation of URDs and showed that all admissible URD($\{2, 3\}; v$) exist with two exceptions. For $K = \{2, 4\}$, the URD($\{2, 4\}; v$) has been constructed for most cases in [6,24], with 1338 pairs of (v, r_2) unsettled. For $K = \{3, 4\}$, the existence problem has been studied in [5,22–24] and was settled in [27]. We list these results as follows.

Theorem 1.1 ([18]). There exists a URD($\{2, 3\}; v$) with $r_2, r_3 > 0$ if and only if $v \equiv 0 \pmod{6}$ and $r_2 + 2r_3 = v - 1$, except for $(v, r_2) = (6, 1)$ or (12, 1).

Theorem 1.2 ([27]). There exists a URD($\{3, 4\}$; v) with $r_3, r_4 > 0$ if and only if $v \equiv 0 \pmod{12}$ and $2r_3 + 3r_4 = v - 1$, except for $(v, r_3) = (12, 1)$.

Theorem 1.3 ([24]). There exists a URD($\{2, 4\}; v$) with $r_2, r_4 > 0$ if and only if $v \equiv 0 \pmod{4}$ and $r_2 + 3r_4 = v - 1$ except for $(v, r_2) \in \{(8, 1), (20, 1), (12, 2), (12, 5)\}$, and possibly excepting:

- $(v, r_2) = (2n, 1), n \in \{52, 100, 184\};$
- $(v, r_2) = (2n, r_2), n \in \{34, 46, 70, 82, 94, 118, 130, 178, 202, 214, 238, 250, 334\}, r_2 admissible;$
- $(v, r_2) = (12n, 2), n \in \{2, 7, 9, 10, 11, 13, 14, 17, 19, 22, 31, 34, 38, 43, 46, 47, 82\}.$

Recently, 4-RGDDs of type 2^u with $u \in \{34, 52, 184, 238\}$ have been constructed in [7,26]. Thus the possible exceptions $(v, r_2) = (2n, 1)$ with $n \in \{34, 52, 184, 238\}$ can be removed from Theorem 1.3.

Theorem 1.4([3,7,10,11,13,15,16,19,21,24–26]). The necessary conditions for the existence of a k-RGDD of type h^u , namely, $u \ge k$, $hu \equiv 0 \pmod{k}$ and $h(u - 1) \equiv 0 \pmod{k - 1}$, are also sufficient for

- k = 2;k = 3, except for $(h, u) \in \{(2, 3), (2, 6), (6, 3)\}$; and for
- k = 4, except for $(h, u) \in \{(2, 4), (2, 10), (3, 4), (6, 4)\}$ and possibly excepting:
- 1. $h \equiv 2, 10 \pmod{12}$: h = 2 and $u \in \{46, 70, 82, 94, 100, 118, 130, 178, 202, 214, 250, 334\}$; h = 10 and $u \in \{4, 94\}$; h = 26 and $u \in \{10, 70, 82\}$; $h \in \{38, 58, 74, 82, 86, 94, 106\}$ and u = 10.
- 2. $h \equiv 6 \pmod{12}$: h = 6 and $u \in \{6, 68\}$; h = 18 and $u \in \{38, 62\}$.
- 3. $h \equiv 0 \pmod{12}$: $h = 36 \text{ and } u \in \{14, 15, 18, 23\}$.

In this paper, we continue to study the existence of $URD(\{2, 4\}; v)$ and obtain the following result.

Theorem 1.5. There exists a URD($\{2, 4\}$; v) with $r_2, r_4 > 0$ if and only if $v \equiv 0 \pmod{4}$ and $r_2 = v - 1 - 3r_4$ except for $(v, r_2) \in \{(8, 1), (20, 1), (12, 2), (12, 5)\}$, and possibly excepting:

- $(v, r_2) = (2n, 1), n \in \{46, 70, 82, 94, 100, 118, 130, 202, 214\};$
- $(v, r_2) = (12n, 2), n \in \{2, 9, 10, 11, 13, 14, 17\}.$

The approach in this paper is somewhat similar to that in [27]. The major difference lies in the source of the master designs for recursive constructions. The master designs in [27] are obtained by manipulating transversal designs, uniform 5-GDDs, and 5-GDDs of type $(4m)^5(4n)^1$, all of which are well studied. However, in this paper as we only got a few input designs to fill in the holes, the group sizes of the master designs are strictly restricted. We have to construct the master designs directly, including non-uniform *K*-GDDs with $K = \{k \in \mathbb{Z} : k \ge 5, k \equiv 1 \pmod{4}\}$ and non-uniform 4-frames.

2. Preliminaries

A group divisible design (X, G, B) is called *frame resolvable* (and is referred to as a *frame*) if its block set B admits a partition into *holey parallel classes*, each holey parallel class being a partition of $X \setminus H$ for some hole $H \in G$. The groups in a frame are often referred to as *holes*. The *hole type* of a frame is just its group type as a GDD. It is well known that in a *k*-frame, each hole must have size a multiple of k - 1; in fact the number of holey parallel classes with respect to a given hole H is precisely |H|/(k - 1).

Theorem 2.1 ([3,4,9,12,16,17,21,26]). The necessary conditions for the existence of a k-frame of type h^u , namely, $u \ge k + 1$, $h \equiv 0 \pmod{k-1}$ and $h(u-1) \equiv 0 \pmod{k}$, are also sufficient for

- k = 2;
- k = 3; and for
- k = 4, and possibly excepting:
- 1. h = 36 and u = 12;
- 2. $h \equiv 6 \pmod{12}$ and
 - (a) h = 6 and $u \in \{7, 23, 27, 35, 39, 47\};$
 - (b) h = 18 and $u \in \{15, 23, 27\}$;
 - (c) $h \in \{30, 66, 78, 114, 150, 174, 222, 246, 258, 282, 318, 330, 354, 534\}$ and $u \in \{7, 23, 27, 39, 47\}$;
 - (d) $h \in \{n : 42 \le n \le 11238\} \setminus \{66, 78, 114, 150, 174, 222, 246, 258, 282, 318, 330, 354, 534\}$ and $u \in \{23, 27\}$.

Download English Version:

https://daneshyari.com/en/article/5776763

Download Persian Version:

https://daneshyari.com/article/5776763

Daneshyari.com