Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Some more uniformly resolvable designs with block sizes 2 and 4

Hengji[a](#page-0-0) Wei^a, Gennian Ge ^{[a,](#page-0-0)[b,](#page-0-1)}[*](#page-0-2)

a *School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China*

^b *Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048, China*

a r t i c l e i n f o

Article history: Received 11 September 2016 Received in revised form 24 April 2017 Accepted 26 April 2017

Keywords: Uniformly resolvable design Resolvable group divisible design Frame

a b s t r a c t

A uniformly resolvable design (URD) is a resolvable design in which each parallel class contains blocks of only one block size *k*. Such a class is denoted *k*-pc and for a given *k* the number of *k*-pcs is denoted r_k . The number of points of the URD is denoted by v. In the literature, the existence of URDs of block sizes k_1 and k_2 with $\{k_1, k_2\} \in \{\{2, 3\}, \{2, 4\}, \{3, 4\}\}\$ has been studied with much efforts. For $\{k_1, k_2\} = \{2, 3\}$ or $\{3, 4\}$, the existence spectra have been determined completely, while for $\{k_1, k_2\} = \{2, 4\}$ there are still 1338 undetermined pairs of $(v, r₂)$.

In this paper we continue the study on the existence of URDs of block sizes 2 and 4. We improve the known results by reducing the number of open cases from 1338 to 16. In addition, we prove that there exist 4-RGDDs of types 2^{178} , 2^{250} and 2^{334} .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let v and λ be positive integers, and let *K* and *M* be two sets of positive integers. A *group divisible design*, denoted GDD(K, M ; v), is a triple $(X, \mathcal{G}, \mathcal{B})$ where X is a set of v *points*, \mathcal{G} is a partition of X into *groups*, and \mathcal{B} is a collection of subsets of *X*, called *blocks*, such that

- 1. $|B| \in K$ for each $B \in \mathcal{B}$,
- 2. $|G| \in M$ for each $G \in \mathcal{G}$,
- 3. $|B \cap G|$ ≤ 1 for each *B* ∈ *B* and each *G* ∈ *G*, and
- 4. each pair of elements of *X* from distinct groups is contained in exactly one block.

If $K = \{k\}$, respectively $M = \{m\}$, then the GDD(*K*, *M*; *v*) is simply denoted GDD(*k*, *M*; *v*), respectively GDD(*K*, *m*; *v*). A GDD(*K*, 1; v) is called a *pairwise balanced design* and denoted PBD(*K*; v). A GDD(*k*, *m*; *mk*) is called a *transversal design* and denoted TD(k, m). We usually use an "exponential" notation to describe the multiset M: a K-GDD of type $g_1^{u_1}g_2^{u_2}\ldots g_s^{u_s}$ is a GDD in which every block has size from the set *K* and in which there are u_i groups of size g_i , $i = 1, 2, \ldots, s$.

In a GDD(*K*, *M*; v) (*X*, G, B) a *parallel class* is a set of blocks, which partitions *X*. If B can be partitioned into parallel classes, then the GDD(*K*, *M*; *v*) is said to be *resolvable* and denoted RGDD(*K*, *M*; *v*). Analogously, a resolvable PBD(*K*; *v*) is denoted RPBD(*K*; v). A parallel class is said to be *uniform* if it contains blocks of only one size *k* (*k*-pc). If all parallel classes of an RPBD(*K*; v) are uniform, the design is said to be *uniformly resolvable*. Here, a uniformly resolvable design RPBD(*K*; v) is denoted URD(*K*; *v*). In a URD(*K*; *v*) the number of parallel classes with blocks of size *k* is denoted r_k , $k \in K$.

<http://dx.doi.org/10.1016/j.disc.2017.04.021> 0012-365X/© 2017 Elsevier B.V. All rights reserved.

CrossMark

^{*} Corresponding author at: School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China. *E-mail address:* gnge@zju.edu.cn (G. Ge).

In [\[18\]](#page--1-0), Rees introduced the notation of URDs and showed that all admissible URD({2, 3}; v) exist with two exceptions. For $K = \{2, 4\}$, the URD($\{2, 4\}$; v) has been constructed for most cases in [\[6,](#page--1-1)[24\]](#page--1-2), with 1338 pairs of (v, r_2) unsettled. For $K = \{3, 4\}$, the existence problem has been studied in $\{5, 22-24\}$ and was settled in $\{27\}$. We list these results as follows.

Theorem 1.1 ([\[18\]](#page--1-0)). There exists a URD({2, 3}; v) with r_2 , $r_3 > 0$ if and only if $v \equiv 0 \pmod{6}$ and $r_2 + 2r_3 = v - 1$, except for $(v, r₂) = (6, 1)$ *or* (12, 1)*.*

Theorem 1.2 ([\[27\]](#page--1-5)). There exists a URD({3, 4}; v) with r_3 , $r_4 > 0$ if and only if $v \equiv 0$ (mod 12) and $2r_3 + 3r_4 = v - 1$, except *for* $(v, r_3) = (12, 1)$ *.*

Theorem 1.3 ([\[24\]](#page--1-2)). There exists a URD({2, 4}; v) with r_2 , $r_4 > 0$ if and only if $v \equiv 0$ (mod 4) and $r_2 + 3r_4 = v - 1$ except for (v,*r*2) ∈ {(8, 1), (20, 1), (12, 2), (12, 5)}*, and possibly excepting:*

- $(v, r_2) = (2n, 1), n \in \{52, 100, 184\}$
- $(v, r_2) = (2n, r_2)$, $n \in \{34, 46, 70, 82, 94, 118, 130, 178, 202, 214, 238, 250, 334\}$, r_2 *admissible*;
- (v,*r*2) = (12*n*, 2)*, n* ∈ {2, 7, 9, 10, 11, 13, 14, 17, 19, 22, 31, 34, 38, 43, 46, 47, 82}*.*

Recently, 4-RGDDs of type 2^u with $u \in \{34, 52, 184, 238\}$ have been constructed in [\[7,](#page--1-6)[26\]](#page--1-7). Thus the possible exceptions $(v, r_2) = (2n, 1)$ with $n \in \{34, 52, 184, 238\}$ can be removed from [Theorem 1.3.](#page-1-0)

Theorem 1.4 ([\[3](#page--1-8)[,7,](#page--1-6)[10](#page--1-9)[,11,](#page--1-10)[13,](#page--1-11)[15,](#page--1-12)[16,](#page--1-13)[19,](#page--1-14)[21,](#page--1-15)[24–](#page--1-2)[26\]](#page--1-7)). The necessary conditions for the existence of a k-RGDD of type h^u , namely, $u \geq k$, $hu \equiv 0 \pmod{k}$ *and* $h(u - 1) \equiv 0 \pmod{k - 1}$ *, are also sufficient for*

 $k = 2$ *:*

 $k = 3$, except for $(h, u) \in \{(2, 3), (2, 6), (6, 3)\}$; and for

 $k = 4$, except for $(h, u) \in \{(2, 4), (2, 10), (3, 4), (6, 4)\}$ *and possibly excepting:*

1. *h* ≡ 2, 10 (mod 12)*: h* = 2 *and u* ∈ {46, 70, 82, 94, 100, 118, 130, 178, 202, 214, 250, 334}*; h* = 10 *and u* ∈ {4, 94}*; h* = 26 *and u* ∈ {10, 70, 82}*; h* ∈ {38, 58, 74, 82, 86, 94, 106} *and u* = 10*.*

- 2. $h \equiv 6 \pmod{12}$ *:* $h = 6$ *and* $u \in \{6, 68\}$ *;* $h = 18$ *and* $u \in \{38, 62\}$ *.*
- 3. *h* ≡ 0 (mod 12)*: h* = 36 *and u* ∈ {14, 15, 18, 23}*.*

In this paper, we continue to study the existence of URD($\{2, 4\}$; v) and obtain the following result.

Theorem 1.5. *There exists a URD*({2, 4}; v) *with* r_2 , $r_4 > 0$ *if and only if* $v \equiv 0 \pmod{4}$ *and* $r_2 = v - 1 - 3r_4$ *except for* (v,*r*2) ∈ {(8, 1), (20, 1), (12, 2), (12, 5)}*, and possibly excepting:*

- $(v, r_2) = (2n, 1)$, $n \in \{46, 70, 82, 94, 100, 118, 130, 202, 214\}$;
- (v, r_2) = (12*n*, 2), *n* ∈ {2, 9, 10, 11, 13, 14, 17*}.*

The approach in this paper is somewhat similar to that in [\[27\]](#page--1-5). The major difference lies in the source of the master designs for recursive constructions. The master designs in [\[27\]](#page--1-5) are obtained by manipulating transversal designs, uniform 5-GDDs, and 5-GDDs of type (4m)⁵(4n)¹, all of which are well studied. However, in this paper as we only got a few input designs to fill in the holes, the group sizes of the master designs are strictly restricted. We have to construct the master designs directly, including non-uniform *K*-GDDs with $K = \{k \in \mathbb{Z} : k \geq 5, k \equiv 1 \pmod{4}\}$ and non-uniform 4-frames.

2. Preliminaries

A group divisible design (*X*, G, B) is called *frame resolvable* (and is referred to as a *frame*) if its block set B admits a partition into *holey parallel classes*, each holey parallel class being a partition of $X \setminus H$ for some hole $H \in \mathcal{G}$. The groups in a frame are often referred to as *holes*. The *hole type* of a frame is just its group type as a GDD. It is well known that in a *k*-frame, each hole must have size a multiple of *k* − 1; in fact the number of holey parallel classes with respect to a given hole *H* is precisely $|H|/(k-1)$.

Theorem 2.1 ([\[3](#page--1-8)[,4,](#page--1-16)[9](#page--1-17)[,12](#page--1-18)[,16,](#page--1-13)[17](#page--1-19)[,21](#page--1-15)[,26\]](#page--1-7)). The necessary conditions for the existence of a k-frame of type h^u, namely, $u \geq k + 1$, $h \equiv 0 \pmod{k-1}$ *and* $h(u-1) \equiv 0 \pmod{k}$ *, are also sufficient for*

- $k = 2$;
- $k = 3$ *; and for*
- $k = 4$, and possibly excepting:
- 1. $h = 36$ and $u = 12$;
- 2. $h \equiv 6 \pmod{12}$ *and*
	- (a) *h* = 6 *and u* ∈ {7, 23, 27, 35, 39, 47}*;*
	- (b) *h* = 18 *and u* ∈ {15, 23, 27}*;*
	- (c) *h* ∈ {30, 66, 78, 114, 150, 174, 222, 246, 258, 282, 318, 330, 354, 534} *and u* ∈ {7, 23, 27, 39, 47}*;*
	- (d) *h* ∈ {*n* : 42 ≤ *n* ≤ 11238} \ {66, 78, 114, 150, 174, 222, 246, 258, 282, 318, 330, 354, 534} *and u* ∈ {23, 27}*.*

Download English Version:

<https://daneshyari.com/en/article/5776763>

Download Persian Version:

<https://daneshyari.com/article/5776763>

[Daneshyari.com](https://daneshyari.com)