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a b s t r a c t

A T -decomposition of a graph G is a set of edge-disjoint copies of T in G that cover the edge
set of G. Graham and Häggkvist (1989) conjectured that any 2ℓ-regular graph G admits a
T -decomposition if T is a treewith ℓ edges. Kouider and Lonc (1999) conjectured that, in the
special case where T is the path with ℓ edges, G admits a T -decomposition D where every
vertex ofG is the end-vertex of exactly two paths ofD, and proved that this statement holds
when G has girth at least (ℓ + 3)/2. In this paper we verify Kouider and Lonc’s Conjecture
for paths of length 4.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A decomposition of a graph G is a set D of edge-disjoint subgraphs of G that cover the edge set of G. Given a graph
H , we say that D is an H-decomposition of G if every element of D is isomorphic to H . Ringel [12] conjectured that the
complete graph K2ℓ+1 admits a T -decomposition for any tree T with ℓ edges. Ringel’s Conjecture is commonly confused with
the Graceful Tree Conjecture that says that any tree T on n vertices admits a labeling f : V (T ) → {0, . . . , n − 1} such that
{1, . . . , n − 1} ⊆ {|f (x) − f (y)| : xy ∈ E(T )}. Since the Graceful Tree Conjecture implies Ringel’s Conjecture [13], Ringel’s
Conjecture holds for many classes of trees such as stars, paths, bistars, caterpillars, and lobsters (see [3,6]). Häggkvist [7]
generalized Ringel’s Conjecture for regular graphs as follows.

Conjecture 1.1 (Graham–Häggkvist, 1989). Let T be a tree with ℓ edges. If G is a 2ℓ-regular graph, then G admits a
T-decomposition

Häggkvist [7] also proved Conjecture 1.1 when G has girth at least the diameter of T . For more results on decompositions
of regular graphs into trees, see [4,5,8,9]. For the case where T = Pℓ is the path with ℓ edges (note that this notation is not
standard), Kouider and Lonc [10] improved Häggkvist’s result proving that if G is a 2ℓ-regular graphwith girth g ≥ (ℓ+3)/2,
then G admits a balanced Pℓ-decompositionD, that is a path decompositionDwhere each vertex is the end-vertex of exactly
two paths of D. These authors also stated the following strengthening of Conjecture 1.1 for paths.

Conjecture 1.2 (Kouider–Lonc, 1999). Let ℓ be a positive integer. If G is a 2ℓ-regular graph, then G admits a balanced
Pℓ-decomposition.

One of the authors [2] proved the following weakening of Conjecture 1.2: for every positive integers ℓ and g such that
g ≥ 3, there exists an integer m0 = m0(ℓ, g) such that, if G is a 2mℓ-regular graph with m ≥ m0, then G admits a
Pℓ-decomposition D such that every vertex of G is the end-vertex of exactly 2m paths of D. In this paper we prove
Conjecture 1.2 in the case ℓ = 4.
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1.1. Notation

A trail T is a graph for which there is a sequence B = x0 · · · xℓ of its vertices such that E(T ) = {xixi+1 : 0 ≤ i ≤ ℓ − 1} and
xixi+1 ̸= xjxj+1, for every i ̸= j. Such a sequence B of vertices is called a tracking of T andwe say that T is the trail induced by the
tracking B. For another example of the use of trackings, we refer to [1]. We say that the vertices x0 and xℓ are the final vertices
of B; and that T is closed if x0 = xℓ. Given a tracking B = x0 · · · xℓ we denote by B− the tracking xℓ · · · x0. By abuse of notation,
we denote by V (B) and E(B) the sets {x0, . . . , xℓ} of vertices, and {xixi+1 : 0 ≤ i ≤ ℓ−1} of edges of B, respectively. Moreover,
we denote by B̄ the trail

(
V (B), E(B)

)
, and by length of Bwemean the length of B̄. We also use ℓ-tracking to denote a tracking

of length ℓ. A set of edge-disjoint trackings B of a graph G is a decomposition of G into trackings or, equivalently, a tracking
decomposition of G if ∪B∈BE(B) = E(G). If every tracking of B has length ℓ, we say that B is a decomposition into ℓ-trackings
(an ℓ-tracking decomposition), and if every tracking of B induces a path, we say that B is a decomposition into path-trackings
(a path tracking decomposition). For ease of notation, in this work we make no distinction between the trackings B and B− in
the following sense. Suppose B ∈ B is a tracking of a trail T ; when we need to choose a tracking of T we choose between B
and B− conveniently.

We say that a graph G is Eulerian if G contains a closed trail that contains all of the edges of G. It is clear that a graph G
is Eulerian if and only if G is connected and each of its vertices has even degree. We say that a (not necessarily connected)
graph G is even if every vertex of G has even degree, i.e., a graph is even if and only if each of its components is Eulerian. An
orientation O of a subset E ′ of edges of G is an attribution of a direction (from one vertex to the other) to each edge of E ′. If an
edge xy is directed from x to y in O, we say that xy leaves x and enters y. Given a vertex v of G, we denote by d+

O (v) (resp. d
−

O (v))
the number of edges leaving (resp. entering) v with respect to O. In this paper, we are interested in orientations O such that
d+

O (v) = d−

O (v), for every vertex v of G. For ease of notation, we say that such an orientation is an Eulerian orientation. Note
that we do not require the graph to be connected in order to admit an Eulerian orientation. It is not hard to see that G admits
an Eulerian orientation if and only if each of its components is Eulerian, i.e., if G is an even graph. This fact is used frequently
in this paper. We also denote by O−, called reverse orientation, the orientation of E ′ such that if xy ∈ E ′ is directed from x to
y in O, then xy is directed from y to x in O−.

Suppose that every tracking in B has length at least 2. We consider an orientation O of a set of edges of G as follows. For
each tracking B = x0 · · · xℓ in B, we orient x0x1 from x1 to x0, and xℓ−1xℓ from xℓ−1 to xℓ. Given a vertex v of G, we denote by
B(v) the number of edges of G directed towards v in O (i.e., B(v) = d−

O (v)) and by Hang(v,B) the number of edges leaving v

in O (i.e., Hang(v,B) = d+

O (v)). We say that an edge that leaves v in O is a hanging edge at v (this definition coincides with
the definition of pre-hanging edge in [1]). We say that a tracking decomposition B of G is balanced if B(u) = B(v) for every
u, v ∈ V (G). It is clear that if B is a balanced path tracking decomposition of G, then B̄ is a balanced path decomposition of G.

We say that a subgraph F of a graph G is a factor of G if V (F ) = V (G). If a factor F is r-regular, we say that F is an r-factor.
Also, we say that a decomposition F of G is an r-factorization if every element of F is an r-factor.

1.2. Overview of the proof

Let G be an 8-regular graph. In Section 2 we use Petersen’s 2-factorization theorem to obtain a 4-factorization {F1, F2}
of G. Then, we prove that F1 admits a balanced P2-decomposition D. Given an Eulerian orientation O to the edges of F2,
we extend each path P of D to a trail of length 4 using one outgoing edge of F2 at each end-vertex of P (see Fig. 1), thus
obtaining a 4-tracking decomposition B of G. We also prove that these extensions can be chosen such that no element of B is
a cycle of length 4. Lemma 2.7 shows that O can be chosen with some additional properties, which we call good orientation
(see Definition 2.5), and Lemma 2.8 uses these special properties to show that the elements of B that do not induce paths
can be paired with paths of B to form a new special element, which we call exceptional extension (see Fig. 6). Thus, we can
understand B as a decomposition into paths and exceptional extensions. In Section 3, we show how to switch edges between
the elements to obtain a decomposition into paths.

2. Decompositions into extensions

In this section we use Petersen’s Factorization Theorem [11] to obtain a well-structured tracking decomposition of
8-regular graphs, called exceptional decomposition into extensions.

Theorem 2.1 (Petersen’s 2-Factorization Theorem). Every 2k-regular graph admits a 2-factorization.

Let G be an 8-regular graph and let F be a 2-factorization of G given by Theorem 2.1. By combining the elements of F we
obtain a decomposition of G into two 4-factors, say F1 and F2. From now on, we fix such two 4-factors F1 and F2. In the figures
throughout this section (and also in Fig. 10(a)), we illustrate the edges of F1 as dashed edges, and the edges of F2 as straight
edges. We first prove the following straightforward lemma.

Lemma 2.2. If G is a 4-regular graph, then G admits a balanced P2-decomposition.
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