Proper connection and size of graphs

Susan A. van Aardt ${ }^{\text {a }}$, Christoph Brause ${ }^{\text {b }}$, Alewyn P. Burger ${ }^{\text {c }}$, Marietjie Frick ${ }^{\text {a }}$, Arnfried Kemnitz ${ }^{\mathrm{d}}$, Ingo Schiermeyer ${ }^{\mathrm{b}, *}$
a Department of Mathematical Sciences, University of South Africa, UNISA, Pretoria, South Africa
${ }^{\text {b }}$ Institut für Diskrete Mathematik und Algebra, TU Bergakademie Freiberg, 09596 Freiberg, Germany
${ }^{\text {c }}$ Department of Logistics, University of Stellenbosch, Matieland, 7602, South Africa
${ }^{\text {d }}$ Computational Mathematics, Technische Universität Braunschweig, 38023 Braunschweig, Germany

ARTICLE INFO

Article history:

Received 22 March 2016
Received in revised form 12 September 2016
Accepted 15 September 2016
Available online xxxx
Keywords:
Edge-colouring
proper connection

Abstract

An edge-coloured graph G is called properly connected if any two vertices are connected by a path whose edges are properly coloured. The proper connection number of a connected graph G, denoted by $\mathrm{pc}(G)$, is the smallest number of colours that are needed in order to make G properly connected. Our main result is the following: Let G be a connected graph of order n and $k \geq 2$. If $|E(G)| \geq\binom{ n-k-1}{2}+k+2$, then $\mathrm{pc}(G) \leq k$ except when $k=2$ and $G \in\left\{G_{1}, G_{2}\right\}$, where $G_{1}=K_{1} \vee\left(2 K_{1}^{2}+K_{2}\right)$ and $G_{2}=K_{1} \vee\left(K_{1}+2 K_{2}\right)$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We use [12] for terminology and notation not defined here and consider finite and simple graphs only. In particular, if G is a graph, then we denote by $c(G)$ the circumference of G, i.e. the order of a longest cycle of G, and by $p(G)$ the detour number of G, i.e. the order of a longest path of G.

An edge-coloured graph G is called rainbow-connected if any two vertices are connected by a path whose edges have different colours. The concept of rainbow connection in graphs was introduced by Chartrand, Johns, McKeon, and Zhang [3]. The rainbow connection number of a connected graph G, denoted by $\mathrm{rc}(G)$, is the smallest number of colours that are needed in order to make G rainbow connected. An easy observation is that if G has n vertices then $\operatorname{rc}(G) \leq n-1$, since one may colour the edges of a given spanning tree of G with different colours, and colour the remaining edges with one of the already used colours.

As a modification of proper colourings and rainbow connections of graphs, Andrews, Lumduamhom, Laforge, and Zhang [1] and, independently, Borozan, Fujita, Gerek, Magnant, Manoussakis, Montero, and Tuza [2] introduced the concept of proper connections of graphs. An edge-coloured graph G is called properly connected if any two vertices are connected by a path whose edges are properly coloured. The proper connection number of a connected graph G, denoted by $\operatorname{pc}(G)$, is the smallest number of colours that are needed in order to make G properly connected.

For the proper connection number of graphs, the following results are known.
Proposition 1. Let G be a connected graph of order n and size m. Then
(1) $1 \leq \mathrm{pc}(G) \leq \min \left\{\chi^{\prime}(G), \operatorname{rc}(G)\right\}$,
(2) $\operatorname{pc}(G)=1 \Leftrightarrow G$ is complete,

[^0](3) $\mathrm{pc}(G)=m \Leftrightarrow G \cong K_{1, m}$,
(4) If G is a tree, then $\operatorname{pc}(G)=\Delta(G)$.
(5) If G is traceable, then $\mathrm{pc}(G) \leq 2$.

For each pair of positive integers n and k, we define by $g(n, k)$ the smallest integer such that every connected graph of order n and size at least $g(n, k)$ has proper connection number at most k. Huang, Li, and Wang [5] showed that $g(n, k)=$ $\binom{n-k-1}{2}+k+2$ for $k=2, n \geq 14$, and for $k=3, n \geq 14$. In this paper we completely determine the function $g(n, k)$.

The analogous problem for rainbow connections was introduced in [7] and results on that problem appear in [6-9,11].

2. Auxiliary results

We shall use the following two results of Borozan et al. [2].
Proposition 2 ([2]). If a graph G contains a vertex v such that $d(v) \geq 2$ and $\mathrm{pc}(G-v) \leq 2$, then $\mathrm{pc}(G) \leq 2$.
Theorem $\mathbf{1}$ ([2]). If G is a 2-connected graph, then $\mathrm{pc}(G) \leq 3$.
Huang et al. [5] extended Theorem 1 as follows.
Theorem 2 ([5]). If G is a connected bridgeless graph, then $\mathrm{pc}(G) \leq 3$.
For a connected graph G with bridges, Huang et al. [5] described the following natural approach: Let $B \subseteq E(G)$ be the set of bridges of G and let G^{*} be the graph obtained from G by contracting each component of $G-B$ to a single vertex. Then G^{*} is obviously a tree with edge set B. They then proved the following result.

Theorem 3 ([5]). If G is a connected graph, then $\mathrm{pc}(G) \leq \max \left\{3, \Delta\left(G^{*}\right)\right\}$.
We shall repeatedly use the following identities.
Proposition 3. For every pair of positive integers a and b,

$$
\begin{align*}
\binom{a}{2}+\binom{b}{2} & =\binom{a+b}{2}-a b, \quad \text { and } \tag{1}\\
\binom{a+1}{2} & =\binom{a}{2}+a . \tag{2}
\end{align*}
$$

The next lemma will be useful for the proof of our main result.
Lemma 1. Let G be a connected graph with t bridges. Then

$$
|E(G)| \leq\binom{ n-t}{2}+t
$$

Proof. The proof is by induction on t. The result obviously holds when $t=0$. Now assume $t \geq 1$. Then $G-B$ has $t+1$ components. Let H be a component of $G-B$ that corresponds to a leaf of G^{*}. Let $n(H)=r$. Then $G-V(H)$ is a connected graph of order $n-r$ with $t-1$ bridges. Hence, by our induction hypothesis, $E(G-V(H)) \leq\binom{ n-r-(t-1)}{2}+t-1$. Therefore, using Proposition 3, we obtain

$$
\begin{aligned}
|E(G)| & \leq\binom{ n-r-t+1}{2}+t-1+\binom{r}{2}+1 \\
& =\binom{n-t+1}{2}-r(n-r-t+1)+t \\
& =\binom{n-t}{2}+(n-t)-r(n-r-t)-r+t \\
& =\binom{n-t}{2}+(n-r-t)(1-r)+t \\
& \leq\binom{ n-t}{2}+t
\end{aligned}
$$

since $n \geq t+r$ and $r \geq 1$.
We end this section with some results on the existence of long cycles in graphs that we need for the proof of our main theorem. We first state a classic result of Erdős and Gallai [4].

https://daneshyari.com/en/article/5776782

Download Persian Version:

https://daneshyari.com/article/5776782

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: vaardsa@unisa.ac.za (S.A. van Aardt), Brause@math.tu-freiberg.de (C. Brause), apburger@sun.ac.za (A.P. Burger), marietjie.frick@gmail.com (M. Frick), a.kemnitz@tu-bs.de (A. Kemnitz), Ingo.Schiermeyer@tu-freiberg.de (I. Schiermeyer).

