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a b s t r a c t

Viewing fullerenes as plane graphswith facial cycles being pentagonal and hexagonal only,
it is shown how to reduce an arbitrary fullerene to the (graph of the) dodecahedron. This
can be achieved by a sequence of eight reduction steps, seven of which are local operations
and the remaining reduction step acts globally. In any case, the resulting algorithm has
polynomial running time.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and preliminary discussion

All concepts not defined in this paper can be found in [1]. As for developments on the topic under consideration, we refer
to [6]. As for the relation between [6] and the current article, see the final remarks at the end of this article. However, there is
a considerable overlap of these two articles. The differences between them lie in a more formalistic approach in the current
article, on the one hand (this article is aiming primarily at mathematicians). On the other hand, the current article includes
additional reduction steps which permit a unified approach to the reduction of arbitrary fullerenes to the dodecahedron.
As a consequence one obtains a single algorithm for reducing an arbitrary fullerene to the dodecahedron; or conversely,
for constructing an arbitrary fullerene from the dodecahedron (in [6], Algorithm 1 uses only three types of reductions to
reduce every fullerene except one C28. Algorithms 2 and 3 are simplifications for practical use—see also the algorithmic
considerations in Section 3 of this paper).

Next we give some definitions.

Definition 1. A fullerene is a plane cubic graph G all of whose face boundaries are pentagonal or hexagonal.

However, it has been shown in [3] that fullerenes are cyclically 5-edge-connected and thus are uniquely embeddable
in the plane since they are 3-connected graphs. That is, a fullerene’s face boundaries are uniquely determined. By unique
embeddability in the plane we mean that if G1,G2 are two embeddings of G on the sphere, then G2 can be obtained from G1
by a topological transformation of the sphere. Consequently, the dual graph D(G) of a fullerene G is uniquely determined.
In fact, we shall consider G and D(G) simultaneously in view of certain reduction steps. Therefore, we shall denote by F the
face of G which corresponds to f ∈ V (D(G)). We also note that fullerenes have precisely 12 pentagonal face boundaries
independent of the number of hexagonal face boundaries, and that fullerenes exist for any integer n > 1 of hexagonal face
boundaries, [5].

For brevity’s sake and because of fullerene’s unique embeddability we shall not distinguish between faces and face
boundaries. Correspondingly, we can just speak of pentagons and hexagons which are face boundaries.
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Definition 2. Let G be a graph having a 2-valent vertex xwith NG(x) = {u, v}. By suppressing the vertex xwemean the graph
(G − x) ∪ {uv} (in case that uv ∈ E(G) we double this edge).

When walking in a path P(x, y) ⊂ G from x to y, where G is an embedded planar graph, then we can speak of the left side,
right side respectively, of P(x, y). Correspondingly, when considering u ∈ V (P(x, y)) − {x, y} we can speak of edges incident
to u as lying to the left (to the right) of u if these edges lie on the left side (on the right side) of P(x, y).

Nowwe look at a path P(x, y) in D(G) where G is a plane graph. Suppose P(x, y) contains a 6-valent vertex v ̸= x, y. When
traversing P(x, y) from x to ywe call v a transient vertex if two edges incident to v lie on the left side of P(x, y) and two edges
incident to v lie on the right side of P(x, y). If, however, precisely one edge incident to v lies on the left side (right side) of
P(x, y), then we say P(x, y) deviates to the left (deviates to the right) at v.

For a graph G, set Vi(G) = {v ∈ V (G) : dG(v) = i} ⊆ V (G).
In the special case where G is a fullerene, we consider Vi(D(G)): clearly,

V (D(G)) = V5(D(G)) ∪̇ V6(D(G)).

Let

D5 := D(G) − V6(D(G)) = D(G)[V5(D(G))].

In what follows we restrict ourselves to the fullerenes.
A component C (5) of D5 corresponds in G to a subgraph consisting of pentagons; such subgraph we call a cluster (of

pentagons). More precisely, we call a cluster an i-cluster if it consists of at least i pentagons.
Next we consider special subgraphs of Gwhich are parts of clusters (or clusters in itself).

• An edge e = xy is said to be of type I if it belongs to two pentagons, F ′

5 and F ′′

5 say, and both x and y lie also in hexagons.
• A vertex x with N(x) = {x1, x2, x3} is said to be of type Y if xxi belongs to two pentagons and xi belongs to a hexagon,

for every i ∈ {1, 2, 3}.
• An edge e = xywith N(x)−{y} = {x1, x2} and N(y)− x = {y1, y2} is said to be of type H if x and y belong to pentagons

only, whereas each of xi, yi, i = 1, 2, belongs to a hexagon as well.

The following is obvious.

• An edge e of type I corresponds to I∗5 := D5[{f ′

5, f
′′

5 }] with f ′

5f
′′

5 ∈ E(D5) satisfying ND5 (f
′

5) ∩ ND5 (f
′′

5 ) = ∅.
• A vertex x of type Y corresponds in D5 to an induced triangle ∆∗

5 := D5[{f ′

5, f
′′

5 , f ′′′

5 }] such that

ND5 (f
(i)
5 ) ∩ ND5 (f

(j)
5 ) = {f (k)5 } for {(i), (j), (k)} = {

′, ′′, ′′′
}.

• An edge e of type H corresponds to an induced subgraph F∗

5 := D5[{f ′

5, f
′′

5 , f ′′′

5 , f iv5 }] where vertices are ‘dashed’ in
cyclical order and with f ′′

5 f
iv
5 ∈ E(F∗

5 ) corresponding to {e} = F ′′

5 ∩ F iv
5 (hence f ′

5f
′′′

5 ̸∈ E(F∗

5 )).

Correspondingly, we call I∗5 , ∆∗

5, F
∗

5 an I∗-configuration, Y ∗-configuration, H∗-configuration, respectively, in D5. Likewise,
we call the subgraphs I5, ∆5, F5 of G consisting of the pentagons which correspond to the vertices of I∗5 , ∆∗

5, F
∗

5 respectively,
I-configuration, Y -configuration, H-configuration of G, respectively.

2. Various reduction steps and structural results

The first reduction steps are obvious.

(i) If G contains an I-configuration with e = xy being of type I , then the cubic graph G− homeomorphic to G − xy is also
a fullerene. The transition from G to G− is called an I-reduction.

(ii) If G contains a Y -configuration with vertex x being of type Y , then we let G− to be the cubic graph homeomorphic to
G − x, and we speak of a Y -reduction; G− is also a fullerene.

(iii) If G contains an H-configuration with e = xy being of type H , then we denote by G− the cubic graph homeomorphic
to G − {x, y}; G− is also a fullerene, and we speak of an H-reduction.

For S ∈ {I, Y ,H} it is clear how an S-reduction results in deriving D−

5 = D(G−) − V6(D(G−)) from D5. Note that some
vertices v ∈ V6(D(G)) are vertices in V5(D(G−)).

Next suppose that G does not admit any S-reduction for any S ∈ {I, Y ,H}, but that D5 has a non-trivial component. It
follows that there is a pentagon P with four of its neighbors being pentagonal; the remaining neighbor, call it D, is either
pentagonal or hexagonal. That is, we are faced with a configuration as depicted in Fig. 1. We also consider face Z placed
diametrically opposite to D and adjacent to two of the neighbors of P . We consider vertices and edges of Fig. 1 as labeled
there and focus on e1 = zu, e2 = rv1, e = viv2, f = xr , g = ys. SetM1 := {e1, e2}, M2 := {e, f , g}.

Suppose D has length ℓ(D) = 6.
If ℓ(Z) = 6, then the cubic graph G− homeomorphic to G−M1 is also a fullerene; the faces Z ′ and D′ of G− corresponding

to Z and D, respectively, are pentagonal. In this case we speak of an M1-reduction when transforming G into G− (cf. Fig. 2a).
Whence we need to consider the case ℓ(Z) = 5.

If ℓ(X) = ℓ(Y ) = 6 and ℓ(Z) = 5, then the cubic graph G− homeomorphic to G − M2 has pentagonal faces D′, X ′, Y ′

corresponding to the hexagonal faces D, X, Y in G (cf. Fig. 2b). Here we say that G− results from G by an M2-reduction.
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