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a b s t r a c t

We prove that infinite regular and chiral maps can only exist on surfaces with one end.
Moreover, we prove that an infinite regular or chiral map on an orientable surface with
positive genus, can only be realized on the Loch Ness monster, that is, the topological
surface of infinite genus with one end.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper is motivated by the following problem, posed by D. Pellicer in [12]: determine which non-compact surfaces
without boundary admit embeddings of chiralmaps. The presentwork gives a complete answer to this question and generalizes
previous results on minimal regular covers of the Archimedean tessellations, see [1]. More precisely:

Theorem 1.1. Let M be a regular or chiral map on a surface S, and let Aut(M) be the automorphism group of the map M. Then
the spaces Ends(S) and Ends(Aut(M)) are homeomorphic. In particular, Aut(M) is infinite if and only if Ends(Aut(M)) has one
element.

Here Ends(S) denotes the space of ends of the surface S and Ends(Aut(M)) the space of ends of the Cayley graph of Aut(M).
For a precise definition of these spaces see Section 2. The preceding theorem tells us that there is a considerable topological
restriction for a surface to support an infinite chiral or regular map, namely, it has to have one end. We also describe the
topology of orientable surfaces supporting orientable and chiral maps:

Theorem 1.2. Let M be a regular map on a non-compact and orientable surface S. Then S is homeomorphic to either the plane
or the Loch Ness monster.

Theorem 1.3. Let M be a chiral map on a non-compact surface S. Then S is homeomorphic to the Loch Ness monster.

The Loch Ness monster is the only orientable topological surface with infinite genus and only one end. As a mathematical
object, this surface appears naturally in many contexts, see e.g., [2,4,20] and [21]. It is important to remark that if an infinite
Cayley graph is not planar, then it cannot be embedded in any surface of finite genus, see [7]. On the other hand, it is possible
to construct vertex-transitive graphs on the Cantor sphere using a very nice construction (tree amalgamation of graphs) due
to B. Mohar (see [9]). Our results imply that these embedded graphs do not define regular or chiral maps.
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Fig. 1. A map in a cube divided into flags.

2. Preliminaries

Maps. We begin this section by discussing some general aspects of maps that will be needed for the proofs of the main
theorems. Our text is not self-contained, hence we refer the reader to [6,12] and references within for details.

In this text the term surface means connected 2-dimensional topological real manifold with empty boundary, and will
be denoted by S. In particular, the transition functions of the corresponding atlas are only required to be continuous. It is
important to remark that we do not require S to be a compact topological space. A map M on a surface S is a finite 2-cell
embedding i : Γ ↪→ S of a locally finite simple graph Γ into S. In other words, only finitely many edges are incident on
each vertex of Γ , the endpoints of each edge are always in different vertices and the function i is a topological embedding
such that each connected component of S \ i(Γ ) is homeomorphic to a disk bounded by a closed (finite) path inΓ . We denote
such a triple by M := M(Γ , i, S).

Every f ∈ Homeo(S) for which there exists an automorphism ρf : Γ → Γ of the graph Γ such that i ◦ ρf = f ◦ i is
called a preautomorphism of the map M(Γ , i, S). The set of preautomorphisms of a map M has a natural group structure
and we denote it by Ãut(M). It is not difficult to see that for each f ∈ Ãut(M) the automorphism ρf is unique, hence we
have a well-defined group morphism ϕ : Ãut(M) → Aut(Γ ), where the codomain is the group of automorphisms of Γ . An
automorphism of the map M is an element of the group Aut(M) := Ãut(M)/Ker(ϕ). By definition, all homeomorphisms
of S in a coset [f ] ∈ Aut(M) determine the same graph automorphism ρf . We shall abuse notation and we shall write the
coset [f ] ∈ Aut(M) as f .

A flag Φ of a map M(Γ , i, S) is a triangle on S whose vertices are vertex i(v), v ∈ V (Γ ), the midpoint of an edge i(e)
incident to i(v) with e ∈ E(Γ ), and an interior point of a face F ⊂ S \ i(Γ ) whose boundary contains i(e). We assume that
all flags contained in the closure of a face F share the same interior point of F as vertex. In this way, every map induces
a triangulation of S given by its flags. Combinatorially, every flag can be identified with an ordered incident triple formed
by a vertex, an edge and a face of the map M. Henceforth, we shall abuse notation and we shall understand flags either as
triangles or as ordered triples. Given a flag Φ of the mapM, there is a unique adjacent flag Φ0 (resp. Φ1 and Φ2) of the map
M that differs from Φ precisely on the vertex (resp. on the edge and on the face). The flag Φ j is called the j-adjacent flag
of Φ . In Fig. 1, we show an example of the cube with some flags marked with their name. We denote the set of flags of a
given map M by F := F(Γ , i, S). The group Aut(M) acts on the set of flags F(Γ , i, S) and this action is free: every element
of Aut(M) is completely determined by the image of a given flag (see Lemma 3.1 in [5]).

Definition 2.1 (Regular and Chiral Maps). AmapM is called regular, respectively chiral, if the action of Aut(M) onF induces
one orbit in flags, respectively the action of Aut(M) on F induces two orbits in flags with the property that adjacent flags
belong to different orbits.

The graph Γ of a regular or chiral map M(Γ , i, S) is always regular, that is, every vertex has the same degree q ∈ N.
Moreover, such maps also satisfy that the boundary of each face in S \ i(Γ ) is formed by a closed path in i(Γ ) of fixed length
p. The pair {p, q} is called the Schläfli type of the mapM. WhenM is a regular map the group Aut(M) is generated by three
involutions ρ0, ρ1, and ρ2, where ρj is the unique automorphism of M sending a fixed base flag Φ to its j-adjacent flag Φ j.
Moreover the generating set {ρ0, ρ1, ρ2} satisfies the relations:

ρ2
1 = ρ2

1 = ρ2
1 = (ρ0ρ2)2 = (ρ0ρ1)p = (ρ1ρ2)q = Id, (1)

and probably some more (see [12]). On the other hand, when M is a chiral map the group Aut(M) is generated by two
elements {σ1, σ2} that satisfy the relations:

σ
p
1 = σ

q
2 = (σ1σ2)2 = Id, (2)
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