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a b s t r a c t

Line graphs constitute a rich and well-studied class of graphs. In this paper, we focus on
three different topics related to line graphs of subcubic triangle-free graphs. First, we show
that any such graph G has an independent set of size at least 3|V (G)|/10, the bound being
sharp. As an immediate consequence, we have that any subcubic triangle-free graph G,
with ni vertices of degree i, has a matching of size at least 3n1/20+3n2/10+9n3/20. Then
we provide several approximate min-max theorems relating cycle-transversals and cycle-
packings of line graphs of subcubic triangle-free graphs. This enables us to prove Jones’
Conjecture for claw-free graphs with maximum degree 4. Finally, we concentrate on the
computational complexity of Feedback Vertex Set, Hamiltonian Cycle and Hamiltonian
Path for subclasses of line graphs of subcubic triangle-free graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The line graph L(G) of a graph G is the graph having as vertices the edges of G, two vertices being adjacent if the
corresponding edges intersect. Line graphs constitute a rich and well-studied class of graphs. In this paper, we concentrate
on the subclass of line graphs of subcubic triangle-free graphs (a subcubic graph is a graph with maximum degree at most
3). It is easy to see that such graphs have maximum degree at most 4. In Section 2, we provide several characterizations
of this class. In particular, we observe that the class of line graphs of subcubic triangle-free graphs coincides with the class
of (K4, claw, diamond)-free graphs. Moreover, we show that the line graphs of cubic triangle-free graphs are exactly those
4-regular graphs for which every edge belongs to exactly one K3.

In Section 3, we consider the independence number α(G) of a graph G, the maximum size of an independent set of G. The
famous Brooks’ Theorem asserts that every connected graph G which is neither a complete graph nor an odd cycle must be
∆(G)-colourable, and so α(G) ≥ |V (G)|/∆(G). Following this result, several authors considered the problem of finding tight
lower bounds for the independence number of graphs having bounded maximum degree and not containing cliques on 3 or
4 vertices [18,19,25,34,42]. Kang et al. [29] showed that if G is a connected (K4, claw)-free 4-regular graph on n vertices then,
apart from three exceptions, α(G) ≥ (8n − 3)/27. Motivated by this result, we show that if G is a (K4, claw, diamond)-free
graph on n vertices, then α(G) ≥ 3n/10. This gives a tight bound, as can be seen by considering the following:

Example 1. Let G be the graph obtained from a 7-cycle C7, where V (C7) = {v1, . . . , v7}, by adding the edges v2v5, v3v6 and
v4v7. Clearly, we have α(L(G)) = α′(G) = 3, where the matching number α′(G) is the size of a maximummatching of G.

Thewell-knownPetersen’s Theoremasserts that every 3-regular bridgeless graphhas a perfectmatching and the question
of whether a graph admits a perfect matching has been deeply investigated (see [1] for a survey). On the other hand, not
much is known about general lower bounds for the matching number. Biedl et al. [8] showed that every subcubic graph G
has a matching of size (|V (G)|−1)/3 and that every cubic graph G has a matching of size (4|V (G)|−1)/9. Henning et al. [26]
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investigated lower bounds in the case of cubic graphs with odd girth. In particular, they showed that every connected cubic
triangle-free graph G has a matching of size (11|V (G)| − 2)/24. By recalling that the matchings of a graph G are in bijection
with the independent sets of its line graph L(G), our result on the independence number of (K4, claw, diamond)-free graphs
directly translates into a tight lower bound for the matching number. Indeed, we show that if G is a subcubic triangle-free
graph with ni vertices of degree i, then α′(G) ≥ 3n1/20 + 3n2/10 + 9n3/20.

Consider now a family of graphs F . An F-transversal of a graph G is a subset T ⊆ V (G) such that T intersects all the
subgraphs of G isomorphic to a graph in F . An F-packing of G is a set of vertex-disjoint subgraphs of G, each isomorphic to
a graph in F . In Section 4, we are interested in F-transversals and F-packings, where F is the family of cycles or the family
of graphs isomorphic to K3. Therefore, we talk about cycle-transversals and triangle-transversals, with the obvious meaning.
Note that, in the literature, a cycle-transversal is also known as a feedback vertex set. We denote by τ∆(G) (resp. τc(G)) the
minimum size of a triangle-transversal (resp. feedback vertex set) of G and by ν∆(G) (resp. νc(G)) the maximum number of
vertex-disjoint triangles (resp. cycles) of G.

F-transversals and F-packings are related in an obvious way. Indeed, each transversal must contain at least one vertex
for each subgraph in a packing and so τc(G) ≥ νc(G) and τ∆(G) ≥ ν∆(G). A natural question is whether τc(G) and τ∆(G)
can be upper bounded in terms of νc(G) and ν∆(G). It turns out we have a positive answer in both cases. Indeed, by taking
the vertex set of ν∆(G) vertex-disjoint triangles, we have that τ∆(G) ≤ 3ν∆(G) (it is easy to see that equality holds for any
K3k+2 with k ≥ 1). The case of cycles was addressed in a seminal work by Erdős and Pósa [15] showing the sharp bound
τc(G) = O(νc(G) log νc(G)). These results are examples of the so-calledmin-max theorems: one parameter is characterized by
its obstructing analogue, or dual. Indeed, either G contains k vertex-disjoint triangles (resp. cycles) or it contains a triangle-
transversal (resp. cycle-transversal) of size 3k (resp. O(k log k)).

Kloks et al. [30] conjectured that the bound given by Erdős and Pósa can be greatly improved in the case of planar graphs:

Conjecture 2 (Kloks et al. [30]). If G is a planar graph, then τc(G) ≤ 2νc(G).

Conjecture 2 is also known as Jones’ Conjecture. If true, it would be sharp, as can be seen by considering wheel
graphs. Kloks et al. [30] showed it holds for outerplanar graphs and, in general, they proved the weaker τc(G) ≤ 5νc(G).
Subsequently and independently, the factor 5 was replaced by 3 in a series of papers [9,12,35]. To the best of our knowledge,
Conjecture 2 is open even in the case of subcubic graphs.

In Section 4, we observe that a triangle-transversal of G = L(H), where H is a subcubic triangle-free graph, essentially
corresponds to an edge cover of H . This enables us to show the sharp bound τ∆(G) ≤ 3ν∆(G)/2. It is easy to see that line
graphs of subcubic triangle-free graphs are not necessarily planar. Nevertheless, we show that, for any such graph G, the
sharp bound τc(G) ≤ 2νc(G) holds. Using this result, we can finally verify Conjecture 2 for claw-free graphs with maximum
degree at most 4.

Feedback Vertex Set is the problem of deciding, given a graph G and an integer k, whether τc(G) ≤ k. Ueno et al. [43]
showed that Feedback Vertex Set can be solved in polynomial time for graphs with maximum degree 3 by a reduction to
a matroid parity problem. On the other hand, Feedback Vertex Set becomes NP-hard for graphs with maximum degree 4,
even if restricted to be planar, as shown by Speckenmeyer [40] (see also [41]). In Section 5, we strengthen this result by
showing the NP-hardness for line graphs of planar cubic bipartite graphs. This is done in two steps. We first show that if
G is the line graph of a cubic triangle-free graph H , then τc(G) ≥ |V (G)|/3 + 1, with equality if and only if H contains a
Hamiltonian path. We then show that the well-known Hamiltonian Path is NP-complete even for planar cubic bipartite
graphs. This matches the fact that Hamiltonian Cycle is NP-complete for planar cubic bipartite graphs [2] and may be of
independent interest. We conclude the section with an inapproximability result for Feedback Vertex Set restricted to line
graphs of subcubic triangle-free graphs.

Despite the fact that Hamiltonicity in line graphs has been widely investigated, beginning with the works of Char-
trand [10,11] and Harary and Nash-Williams [23], to the best of our knowledge no result is known aboutHamiltonian Cycle
for line graphs. ConcerningHamiltonian Path, Bertossi [7] showed that the problem isNP-complete for line graphs. Lai and
Wei [33] strengthened this result by showing that it remainsNP-hard evenwhen restricted to line graphs of bipartite graphs.
In Section 6, we prove that Hamiltonian Cycle remains NP-hard for line graphs of 1-subdivisions of planar cubic bipartite
graphs and for line graphs of planar cubic bipartite graphs. Finally, we show that Hamiltonian Path remains NP-hard for
line graphs of 1-subdivisions of planar cubic bipartite graphs, thus strengthening the result by Lai and Wei [33].

As a side remark, let us mention that line graphs of subcubic triangle-free graphs are not necessarily 3-colourable, as
Example 1 shows. Moreover, if G is the line graph of a cubic triangle-free graph H , then G is 3-colourable if and only if H
is of class 1. This implies that 3-Colourability is NP-complete even when restricted to line graphs of cubic triangle-free
graphs [31].

We assume the reader is familiar with notions of graph theory; for those not defined here, we refer to [44]. Note that we
consider only finite and undirected graphs with no loops and no multiple edges. A k-vertex is a vertex of degree k. A cubic
graph is a 3-regular graph. The complete graph on n vertices is denoted by Kn and the complete bipartite graphwith partition
classes of size n and m is denoted by Kn,m. A triangle is (a graph isomorphic to) K3, a claw is K1,3 and a diamond is the graph
obtained from K4 by removing an edge. A 1-subdivision of G is the graph obtained from G by adding a new vertex for each
edge of G, i.e. each edge is replaced by a path of length 2.
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