ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Cycle extension in edge-colored complete graphs

Ruonan Li ^{a,b}, Hajo Broersma ^{b,*}, Chuandong Xu ^a, Shenggui Zhang ^a

- ^a Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710072, PR China
- ^b Faculty of EEMCS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

ARTICLE INFO

Article history: Received 4 July 2016 Received in revised form 23 January 2017 Accepted 24 January 2017

Keywords: Edge-colored graph Complete graph Properly colored cycle

ABSTRACT

Let G be an edge-colored graph. The minimum color degree of G is the minimum number of different colors appearing on the edges incident with the vertices of G. In this paper, we study the existence of properly edge-colored cycles in (not necessarily properly) edge-colored complete graphs. Fujita and Magnant (2011) conjectured that in an edge-colored complete graph on n vertices with minimum color degree at least (n+1)/2, each vertex is contained in a properly edge-colored cycle of length k, for all k with $3 \le k \le n$. They confirmed the conjecture for k=3 and k=4, and they showed that each vertex is contained in a properly edge-colored cycle of length at least 5 when $n \ge 13$, but even the existence of properly edge-colored Hamilton cycles is unknown (in complete graphs that satisfy the conditions of the conjecture). We prove a cycle extension result that implies that each vertex is contained in a properly edge-colored cycle of length at least the minimum color degree.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We only consider finite and simple graphs. For terminology and notation not defined here, we refer the reader to [3]. Let G be a graph. We use V(G) and E(G) to denote the vertex set and edge set of G, respectively. An edge-coloring of G is a mapping $col: E(G) \to \mathbb{N}$, where \mathbb{N} is the set of natural numbers. A graph G is called an edge-colored graph (or throughout this paper simply a colored graph) if its edge set is assigned an edge-coloring. We say that a colored graph G is a properly colored graph (or PC graph for short) if each pair of adjacent edges (i.e., edges that have precisely one end vertex in common) in G are assigned distinct colors. For a vertex V in a colored graph G, the color degree of G, denoted by $G^c_G(V)$, is the number of distinct colors appearing on the edges incident with G0, and G1 denotes the minimum color degree of G2 taken over all vertices of G3.

For a colored graph G, the color of an edge $e \in E(G)$ is denoted by $col_G(e)$. For a subgraph H of G, we use $col_G(H)$ to denote the set of colors appearing on the edges of H. For vertex-disjoint subgraphs F and H of G, we use $col_G(F, H)$ to denote the set of colors appearing on the edges between F and H. If F contains only one vertex v, then we write $col_G(v, H)$ instead of $col_G(\{v\}, H)$. When there is no ambiguity, we often write $d^c(v)$ for $d^c_G(v)$, col(e) for $col_G(e)$, col(H) for $col_G(H)$, col(F, H) for $col_G(F, H)$ and col(v, H) for $col_G(v, H)$. For a color $i \in col(G)$, we use G^i to denote the spanning subgraph of G induced by the edges of color G^i . We denote by G^i to denote by G^i to denote by G^i to denote the length G^i in G^i in G^i to denote the length G^i in G^i

In this paper, we study the existence of PC cycles in colored complete graphs. This topic has been well-studied. We refer to Chapter 16 in [1] for a survey. In this field, maximum monochromatic degree conditions and color degree conditions

^{*} Corresponding author.

E-mail addresses: liruonan@mail.nwpu.edu.cn (R. Li), h.j.broersma@utwente.nl (H. Broersma), chuandong.xu@live.com (C. Xu), sgzhang@nwpu.edu.cn (S. Zhang).

for guaranteeing the existence of certain cycles have often been considered. Regarding maximum monochromatic degree conditions, Bollobás and Erdős [2] already conjectured back in the 1970s that every colored K_n contains a PC Hamilton cycle if $\Delta^{mon}(K_n) < \lfloor \frac{n}{2} \rfloor$. Very recently, Lo [9] confirmed this conjecture asymptotically. When investigating long PC cycles, Wang et al. [10] proved that if $\Delta^{mon}(K_n) < \lfloor \frac{n}{2} \rfloor$, then K_n contains a PC cycle of length at least $\lceil \frac{n}{2} \rceil + 2$. Color degree conditions have been studied in the context of the existence of short PC cycles [5,6] as well as long PC cycles [7,8] in general (not necessarily complete) colored graphs.

Our main motivation for the results in this paper is the following conjecture due to Fujita and Magnant [4].

Conjecture 1 (Fujita and Magnant [4]). Let G be a colored K_n . If $\delta^c(G) \ge \frac{n+1}{2}$, then each vertex of G is contained in a PC cycle of length k, for all k with $3 \le k \le n$.

In the same paper, they presented a class of colored complete graphs to show that the statement of Conjecture 1 would be best possible (the lower bound on $\delta^c(G)$ cannot be improved), and they established results on short PC cycles to support their conjecture.

Theorem 2 (Fujita and Magnant [4]). Let G be a colored K_n with $\delta^c(G) \ge \frac{n+1}{2}$. Then each vertex of G is contained in PC cycles of length 3 and 4. Moreover, if $n \ge 13$, then each vertex of G is contained in a PC cycle of length at least 5.

For other results related to Conjecture 1, we recommend Lo's papers [7] and [9]. In [7], it is proved that a colored graph G contains a PC cycle of length at least $\delta^c(G) + 1$ when $\delta^c(G) \geq \frac{n+1}{2}$. In [9], the main result implies that a colored complete graph G (of order n with n sufficiently large) contains a PC Hamilton cycle when $\delta^c(G) \geq (1/2 + \epsilon)n$ for any arbitrarily small constant $\epsilon > 0$. In this context, we focus on the following problem.

Problem 1. Let *G* be a colored K_n with $\delta^c(G) \ge \frac{n+1}{2}$. Determine the largest value of f(n) such that each vertex of *G* is contained in a PC cycle of length at least f(n).

The existence of a PC Hamilton cycle would solve the problem and show that f(n) = n. By Theorem 2, $f(n) \ge 4$, and $f(n) \ge 5$ when $n \ge 13$. In this paper, we first present a PC cycle extension theorem, and then show that it implies that $f(n) \ge \delta^c(G)$.

Theorem 3. Let G be a colored K_n , and let C be a PC cycle of length k in G. If $\delta^c(G) \ge \max\{\frac{n-k}{2}, k\} + 1$, then G contains a PC cycle C^* such that $V(C) \subset V(C^*)$ and $|C^*| > k$.

We postpone the proof of Theorem 3 to Section 3. From Theorem 3, we can obtain the following corollaries.

Corollary 4. Let G be a colored K_n with $\delta^c(G) \ge \frac{n+1}{2}$. Then each vertex of G is contained in a PC cycle of length at least $\delta^c(G)$, i.e., $f(n) \ge \delta^c(G)$.

Proof. Let G be a colored K_n with $\delta^c(G) \ge \frac{n+1}{2}$. By Theorem 2, each vertex of G is contained in a PC cycle. For an arbitrary vertex $v \in V(G)$, denote by C the longest PC cycle containing v. We will prove that $|C| \ge \delta^c(G)$. Suppose the contrary. Then $3 \le |C| \le \delta^c(G) - 1$, and $\delta^c(G) \ge \frac{n+1}{2} > \frac{n-|C|}{2} + 1$. This implies that $\delta^c(G) \ge \max\{\frac{n-|C|}{2}, |C|\} + 1$. By Theorem 3, there exists a longer PC cycle containing V(C), a contradiction. \square

Corollary 5. Let G be a colored K_n , and let C be a PC cycle of length k in G. If $k \ge \frac{n}{3}$, then there exists a PC cycle C^* of length at least $\delta^c(G)$ such that $V(C) \subseteq V(C^*)$.

Proof. Let G be a colored K_n , let C be a PC cycle of length $k \geq \frac{n}{3}$ in G, and let C^* be a longest PC cycle in G with $V(C) \subseteq V(C^*)$. Then, clearly $|C^*| \geq k \geq \frac{n}{3}$. We will prove that $|C^*| \geq \delta^c(G)$. Suppose the contrary. Then, $\delta^c(G) \geq |C^*| + 1 = \max\{\frac{n-|C^*|}{2}, |C^*|\} + 1$. By Theorem 3, there exists a longer PC cycle containing $V(C^*)$, a contradiction. \square

In the light of the results we have obtained, we propose the following two problems. We first note that, by a result due to Yeo in [11], every colored K_n with $\delta^c(K_n) \ge 2$ contains a PC cycle (in fact, a PC C_3 or a PC C_4).

Problem 2. Does every colored K_n with $\delta^c(K_n) \geq 2$ contain a PC cycle of length at least $\delta^c(K_n)$?

Problem 3. Let *C* be a PC cycle in a colored K_n . Does there exist a PC cycle C' with $|C'| \ge \delta^c(K_n)$ and $V(C) \subseteq V(C')$?

Note that in Problem 3, C' is not necessarily distinct from C.

In order to present our proof of Theorem 3 in Section 3, we need some additional terminology and notation, and we prove two auxiliary lemmas in the next section.

Download English Version:

https://daneshyari.com/en/article/5776802

Download Persian Version:

https://daneshyari.com/article/5776802

<u>Daneshyari.com</u>