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a b s t r a c t

Triply stochastic cubic tensors, or sharply transitive sets of doubly stochastic matrices, are
decompositions of the all-ones matrix as the sum of an ordered set of bistochastic ma-
trices. They combine to yield so-called weak approximate quasigroups and Latin squares.
Approximate symmetry is implemented by the stochastic matrix actions of quasigroups on
homogeneous spaces, thereby extending the concept of exact symmetry as implemented
by permutation matrix actions of groups on coset spaces. Now approximate quasigroups
and Latin squares are described as being strong if they occur within quasigroup actions.
We study these weak and strong objects, in particular examining the location of the latter
within the polytope of triply stochastic cubic tensors. We also establish the rudiments of
an algebraic structure theory for approximate quasigroups. Upon relaxation from prob-
ability distributions to their supports, approximate quasigroups furnish non-associative
analogues of (set-theoretical) hypergroups.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Latin squares and triply stochastic cubic tensors

A Latin square on an ordered n-element set X = {x1 < · · · < xn} is defined as an n × n square matrix, containing n
copies of each element of X among its entries, such that each element appears precisely once in each row and each column
of the square. While the definition is combinatorial, it may be brought into the purview of linear algebra on noting that the
occurrences of each element xi of X in the square form a permutation matrix, so each Latin square on X is specified by the
ordered stack of respective permutation matrices for x1, . . . , xn, the sum of these matrices being the square all-ones matrix
Jn of degree n. This approach was the basis for a formal enumeration of the Latin squares of order n [20, p. 294].

Now just as doubly stochastic (or bistochastic) square matrices serve to extend the concept of a permutation matrix,
one may define a triply stochastic or tristochastic cubic tensor, or (weak) approximate Latin square, of degree n to be an
ordered list or stack (S1, . . . , Sn) of doubly stochastic matrices of degree n, such that the sum of the matrices S1, . . . , Sn
is Jn (Definition 3.4). These objects form one of the two main themes of the paper.

1.2. Quasigroups and approximate symmetry

Each Latin square on an ordered n-element set X may be considered algebraically, as the body of the multiplication table
of a quasigroup (X, ·) for which the respective rows and columns are labeled by the elements of X in order. The Latin square
propertymeans that for any two elements x, y, z in X , the equation x ·y = z specifies the third element uniquely. (Onewrites
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x = z/y and y = x\z.) Groups have this cancellation property, so the multiplication table of any group is a Latin square, and
groups form a special, associative, case of quasigroups. The importance of groups stems from their role in the analysis of
exact symmetry. In particular, any transitive permutation action of a group Q is similar to the action of the group on the
space P\Q of cosets of a point stabilizer P , a subgroup of Q . More generally, for a subquasigroup P of a finite quasigroup Q ,
onemay similarly define an action of Q on a coset or homogeneous space P\Q (Section 2.2). In general, the action of elements
ofQ on P\Q is byMarkovmatrices (2.4) (compare [21], [22, Ch. 4], and the introduction to [12]). TheMarkovmatrices reduce
to permutation matrices if Q is a group. Thus linear algebra affords an exact theory of approximate symmetry provided by
quasigroup actions, extending the combinatorial exact symmetry provided by group actions. This approach to approximate
symmetry forms the second main theme of the paper.

1.3. Strong approximate quasigroups

In the context where the doubly stochastic square matrices that combine to a triply stochastic cubic tensor happen to
be permutation matrices, it is said that the set of corresponding permutations is sharply transitive [19]. (In Baer’s original
paper on the subject, sharp transitivity was called ‘‘simple transitivity’’ [1]. On the other hand, Cameron used the term
‘‘uniform transitivity’’, placing sharp transitivity into the context of matroids and permutation geometries [6].) If y is an
element of a quasigroup (X, ·) on the ordered set X as above, define the right multiplication RQ (y) : X → X; x ↦→ x · y. Then(
RQ (x1), . . . , RQ (xn)

)
is a sharply transitive set of permutations of X . This process may be reversed to obtain a quasigroup

from a sharply transitive set of permutations.
Now extending from exact symmetry (i.e., permutation matrices) to approximate symmetry, we are led to consider sets

of quasigroup action matrices summing to Jn. These sets are again described as being sharply transitive [12]. Extending the
correspondence between sharply transitive sets of permutations and (exact) quasigroups, these sharply transitive sets of
quasigroup action matrices yield strong approximate quasigroups ( Definitions 2.7 and 2.12). In particular, it is shown that
exact quasigroups are strongly approximate quasigroups (Theorem 2.13).

With our current state of knowledge, it is hard to construct strong approximate quasigroups. One available technique
(reviewed in Section 4)was described in the earlier paper [12], using quasigroup permutation representations of 12-element
quasigroups Q (Γ ) obtained by twisting the multiplication table of the group S3 × Z/2 at locations determined by a directed
graphΓ on the vertex set S3. Various examples of strong approximate quasigroups thatmay be producedwith this technique
are exhibited in Section 5, along with a smaller example obtained by an ad hoc method (Section 5.1).

1.4. Parastrophy and weak approximate quasigroups

There are twoways that a triply stochastic cubic (0, 1)-tensor (sharply transitive set of permutationmatrices) corresponds
with a quasigroup or Latin square. On the one hand, one may take the occurrences of each symbol in the Latin square (the
body of the quasigroup multiplication table), as described in Section 1.1. On the other hand, one has the permutations given
by the respective right multiplications by quasigroup elements, as described in Section 1.3. These two sets are related by the
concept of parastrophy, extended to arbitrary triply stochastic cubic tensors in Section 3.1. Parastrophy becomesmuchmore
transparent within the linear algebraic context: simply transposition of the external indices of the tensor (Definition 3.1).
Under parastrophy, strong approximate quasigroups are related to strong approximate Latin squares (Section 3.5). In turn,
weak approximate Latin squares are related to weak approximate quasigroups (Section 2).

1.5. The polytope of triply stochastic cubic tensors

For a given positive degree n, the set Ωn of all doubly stochastic square matrices forms a polytope of dimension (n − 1)2.
The permutationmatrices are its extreme points [4,5], [15, §II.1.7], [18, Th. II]. This polytope is often described as the Birkhoff
polytope, in recognition of Birkhoff’s initial identification of the extreme points [2, §1]. In turn, the set Λn of triply stochastic
cubic tensors of degree n also forms a polytope, of dimension (n − 1)3 (Section 3.3). However, although each Latin square is
an extreme point (Theorem 3.13), in degrees n > 2 there are other extreme points which we describe here as exotic [11].
Problem 3.21 asks whether strong approximate Latin squares may appear as exotic extreme points of Λn. The problem is
shown to have a negative answer for n = 3 (Proposition 3.22). The convex hull of the Latin squares is described as the
indigenous part of Λn. Problem 5.2 asks whether each strong approximate quasigroup lies in the indigenous part of the
polytope Λn.

1.6. Set-valued algebras

Binary multiplications of weak and strong approximate quasigroups take values among probability distributions on the
underlying set of the algebra. If one is willing to allow a loss of information, onemay also pass from probability distributions
to their supports, obtaining algebras whose binary multiplication takes values in the set of subsets of the underlying set
of the algebra. Such algebras have been studied quite widely. The final section of the paper reviews relevant terminology,
shows how the supports of approximate quasigroups satisfy the reproduction axiom (Theorem 6.4), and locates the very
well-behaved strong approximate quasigroup from Section 5.2 within the context of set-valued algebras.
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