Trivalent vertex-transitive bi-dihedrants

Mi-Mi Zhang, Jin-Xin Zhou*
Department of Mathematics, Beijing Jiaotong University, Beijing, 100044, China

ARTICLE INFO

Article history:

Received 4 October 2015
Received in revised form 4 March 2017
Accepted 22 March 2017

Keywords:

Bi-dihedrant
Cayley graph
Vertex-transitive

Abstract

A graph is said to be a bi-Cayley graph over a group H if it admits H as a semiregular automorphism group with two vertex-orbits. A bi-dihedrant is a bi-Cayley graph over a dihedral group. In this paper, it is shown that every connected trivalent edge-transitive bi-dihedrant is also vertex-transitive, and then we present a classification of trivalent arc-transitive bi-dihedrants, and study the Cayley property of trivalent vertex-transitive bi-dihedrants.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All groups considered in this paper are finite, and all graphs are finite, connected, simple and undirected. For the grouptheoretic and graph-theoretic terminology not defined here we refer the reader to $[5,30]$.

Given a group H, let R, L and S be subsets of H such that $R^{-1}=R, L^{-1}=L$ and $R \cup L$ does not contain the identity element of H. The bi-Cayley graph over H relative to the triple (R, L, S), denoted by BiCay (H, R, L, S), is the graph having vertex set the union of the right part $H_{0}=\left\{h_{0} \mid h \in H\right\}$ and the left part $H_{1}=\left\{h_{1} \mid h \in H\right\}$, and edge set the union of the right edges $\left\{\left\{h_{0}, g_{0}\right\} \mid g h^{-1} \in R\right\}$, the left edges $\left\{\left\{h_{1}, g_{1}\right\} \mid g h^{-1} \in L\right\}$ and the spokes $\left\{\left\{h_{0}, g_{1}\right\} \mid g h^{-1} \in S\right\}$. For the case when $|S|=1$, $\operatorname{BiCay}(H, R, L, S)$ is also called a one-matching bi-Cayley graph. If $|R|=|L|=s$, then BiCay (H, R, L, S) is said to be an s-type bi-Cayley graph. Note that a graph is isomorphic to a bi-Cayley graph over a group H if and only if it admits a group isomorphic to H as a semiregular group of automorphisms with two vertex-orbits.

Bi-Cayley graphs form an extensively studied class of graphs (see [1,2,9,13,19,21-23]). As one of the most important finite graphs, the Petersen graph is a bi-Cayley graph over a cyclic group of order 5. A bi-Cayley graph over a cyclic group is sometimes simply called a bicirculant. The Petersen graph is the initial member of a family of graphs $P(n, t)$, known now as the generalized Petersen graphs (see [29]), which can be also constructed as bi-circulants. Let $n \geq 3,1 \leq t<n / 2$ and set $H=\langle a\rangle \cong \mathbb{Z}_{n}$. The generalized Petersen graph $P(n, t)$ is isomorphic to the bicirculant BiCay $\left(H,\left\{a, a^{-1}\right\},\left\{a^{t}, a^{-t}\right\},\{1\}\right)$. The complete classification of vertex-transitive (edge-transitive) generalized Petersen graphs has been worked out in [12,25].

Recently, in the study of bi-Cayley graphs, considerable attention was given to the following natural problem: for a given finite group H, classify bi-Cayley graphs with specific symmetry properties over H. For example, all trivalent vertex-transitive (edge-transitive) bicirculants were classified in [24,26], all tetravalent edge-transitive bicirculants were characterized in [16], a classification of arc-transitive one-matching abelian bi-Cayley graphs (namely, bi-Cayley graphs over abelian groups) was presented in [17], and all trivalent vertex-transitive abelian bi-Cayley graphs were classified in [34]. The object of this paper is to characterize trivalent vertex-transitive bi-Cayley graphs over dihedral groups. A bi-Cayley graph over a dihedral group is also simply called a bi-dihedrant. Before stating the main results, we introduce some terminology.

For a bi-Cayley graph $\Gamma=\operatorname{BiCay}(H, R, L, S)$ over a group H, we can assume that the identity 1 of H is in S (see Proposition 3.1(2)). The triple (R, L, S) of three subsets R, L, S of a group H is called bi-Cayley triple if $R=R^{-1}, L=L^{-1}$, and

[^0]Table 1
Trivalent edge-transitive bi-dihedrants.

No.	n	$(R, L, S) \equiv$	Γ	Conditions	Cayley
1	$2 m$	$\left(\{b\},\left\{b a^{2 t}\right\},\{1, a\}\right)$	$\mathrm{CQ}(t, m)$	$\begin{aligned} & 2 \leq t \leq m-3, \\ & m \mid t^{2}+t+1 \end{aligned}$	Yes
2	4	($\left.\{b, b a\},\left\{b a^{2}, b a^{3}\right\},\{1\}\right)$	F016A		Yes
3	4	($\{b\},\{b a\},\{1, a\}$)	F016A		Yes
4	5	$\left(\left\{b, b a^{3}\right\},\left\{b a, b a^{2}\right\},\{1\}\right)$	F020B		No
5	5	($\left.\{b, b a\},\left\{a, a^{-1}\right\},\{1\}\right)$	F020A		No
6	6	$\left(\{b, b a\},\left\{b a^{3}, b a^{4}\right\},\{1\}\right)$	F024A		Yes
7	6	($\left.\{b\},\left\{b a^{2}\right\},\{1, a\}\right)$	F024A		Yes
8	8	($\left.\{b, b a\},\left\{b a^{2}, b a^{5}\right\},\{1\}\right)$	F032A		Yes
9	10	($\left.\left\{b, b a^{4}\right\},\left\{b a, b a^{3}\right\},\{1\}\right)$	F040A		No
10	10	($\left.\left\{b, b a^{4}\right\},\left\{a, a^{-1}\right\},\{1\}\right)$	F040A		No
11	12	$\left(\{b, b a\},\left\{b a^{3}, b a^{10}\right\},\{1\}\right)$	F048A		Yes
12	20	$\left(\left\{b, b a^{14}\right\},\left\{b a, b a^{3}\right\},\{1\}\right)$	F080A		No
13	$2 m$	$\left(\{b, b a\},\left\{b a^{-2 t}, b a^{-2 t-1}\right\},\{1\}\right)$	$\mathrm{CQ}(t, m)$	$\begin{aligned} & 2 \leq t \leq m-3 \\ & m \mid t^{2}-t+1 \end{aligned}$	Yes
14	$2 m$	$\left(\{b, b a\},\left\{b a^{-2 t}, b a^{-2 t+m-1}\right\},\{1\}\right)$,	$\mathrm{CQ}(t, m)$	$\begin{aligned} & 2 \leq t \leq m-3 \\ & m \mid 2\left(t^{2}-t+1\right), \\ & m \text { even, } t \text { odd } \end{aligned}$	Yes

$1 \in S$. Two bi-Cayley triples (R, L, S) and $\left(R^{\prime}, L^{\prime}, S^{\prime}\right)$ of a group H are said to be equivalent, denoted by $(R, L, S) \equiv\left(R^{\prime}, L^{\prime}, S^{\prime}\right)$, if either $\left(R^{\prime}, L^{\prime}, S^{\prime}\right)=(R, L, S)^{\alpha}$ or $\left(R^{\prime}, L^{\prime}, S^{\prime}\right)=\left(L, R, S^{-1}\right)^{\alpha}$ for some automorphism α of H. The bi-Cayley graphs corresponding to two equivalent bi-Cayley triples of the same group are isomorphic (see Proposition 3.1(3)-(4)). Hereafter, the notation $\mathrm{FnA}, \mathrm{FnB}$, etc. will refer to the corresponding graphs in the Foster census [7,28]. The notation $\mathrm{CQ}(t, m)$ will refer to the cyclic cover of the cube F008A (see Section 4 for its construction).

Our first result classifies all trivalent edge-transitive bi-dihedrants.
Theorem 1.1. Let $H=\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle(n \geq 3)$. A connected trivalent bi-dihedrant $\Gamma=\operatorname{BiCay}(H, R, L, S)$ is edge-transitive if and only if the triple (R, L, S) is equivalent to one of the triples in Table 1. Furthermore, all of the graphs in Table 1 are arc-transitive.

Our second result shows that every trivalent vertex-transitive 0- or 1-type bi-dihedrant is a Cayley graph.
Theorem 1.2. Every connected trivalent vertex-transitive 0- or 1-type bi-dihedrant is a Cayley graph.
For the 2-type case, the situation becomes a bit more complicated. We shall first prove the following Theorem 1.3, and using this, in Corollary 1.4 we give a classification of connected trivalent 2-type vertex-transitive non-Cayley bi-Cayley graphs over $D_{2 n}$ with n odd. For the case when n is even, the method used here is invalid, and this case shall be dealt with in our subsequent paper [33].

Before stating Theorem 1.3, we first introduce some notation. Let $\Gamma=\operatorname{BiCay}(H, R, L, S)$ be a bi-Cayley graph over a group H. It is easy to see that H acts as a semiregular group of automorphisms by right multiplication, with H_{0} and H_{1} as its orbits on vertices, and we denote this group of automorphisms of Γ as $\mathcal{R}(H)$.

Theorem 1.3. Let $\Gamma=\operatorname{BiCay}(H, R, L, S)$ be a connected trivalent vertex-transitive 2-type bi-dihedrant, where $H=\langle a, b| a^{n}=$ $b^{2}=1$, bab $\left.=a^{-1}\right\rangle(n \geq 3)$. Suppose that G is a vertex-transitive group of automorphisms of Γ such that $\mathcal{R}(H) \leq G$ and H_{0} and H_{1} are blocks of imprimitivity of G on $V(\Gamma)$. Then, either Γ is Cayley or one of the following occurs:
(1) $(R, L, S) \equiv\left(\left\{b, b a^{\ell+1}\right\},\left\{b a, b a^{\ell^{2}+\ell+1}\right\},\{1\}\right)$, where $n \geq 5, \ell^{3}+\ell^{2}+\ell+1 \equiv 0(\bmod n), \ell^{2} \not \equiv 1(\bmod n)$;
(2) $(R, L, S) \equiv\left(\left\{b a^{-\ell}, b a^{\ell}\right\},\left\{a, a^{-1}\right\},\{1\}\right)$, where $n=2 k$ and $\ell^{2} \equiv-1(\bmod k)$. Furthermore, Γ is also a bi-Cayley graph over an abelian group $\mathbb{Z}_{n} \times \mathbb{Z}_{2}$.

Furthermore, all of the graphs arising from (1)-(2) are vertex-transitive non-Cayley.
Our last result classifies connected trivalent 2-type vertex-transitive non-Cayley bi-Cayley graphs over $D_{2 n}$ with n odd ${ }^{1}$.
Corollary 1.4. Let $\Gamma=\operatorname{BiCay}(H, R, L,\{1\})$ be a connected trivalent 2-type vertex-transitive bi-dihedrant, where $H=$ $\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle$ with n odd. Then Γ is non-Cayley if and only if one of the following occurs:

[^1]
https://daneshyari.com/en/article/5776829

Download Persian Version:
https://daneshyari.com/article/5776829

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: 14118412@bjtu.edu.cn (M.-M. Zhang), jxzhou@bjtu.edu.cn (J.-X. Zhou).

[^1]: ${ }^{1}$ By checking the census of trivalent vertex-transitive graphs of order up to 1000 in [27], we find out that there are 981 non-Cayley graphs, and among these graphs, 233 graphs are non-Cayley bi-dihedrants and 187 graphs are covered by Theorem 1.3. This may suggest bi-dihedrants form an important classes of trivalent vertex-transitive non-Cayley graphs. We thank a referee for suggesting us to check the census in [27].

