Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Set systems with positive intersection sizes

Jiuqiang Liu^{a,b}, Xiaodong Liu^a

^a School of Management Engineering, Xi'an University of Finance and Economics, Xi'an Shaanxi, 710100, PR China
^b Department of Mathematics, Eastern Michigan University, Ypsilanti, MI 48197, USA

ARTICLE INFO

ABSTRACT

Article history: Received 18 February 2016 Received in revised form 19 April 2017 Accepted 24 April 2017 In this paper, we derive a best possible *k*-wise extension to the well-known Snevily theorem on set systems (Snevily, 2003) which strengthens the well-known theorem by Füredi and Sudakov (2004). We also provide a conjecture which gives a common generalization to all existing non-modular \mathcal{L} -intersection theorems.

© 2017 Elsevier B.V. All rights reserved.

Keywords: Erdös-Ko-Rado theorem Frankl-Wilson theorem Snevily theorem Cross t-intersecting families k-wise *L*-intersecting families Multilinear polynomials

1. Introduction

A family \mathcal{F} of subsets of $[n] = \{1, 2, ..., n\}$ is called *intersecting* if every pair of distinct subsets $E, F \in \mathcal{F}$ have a nonempty intersection. Let $\mathcal{L} = \{l_1, l_2, ..., l_s\}$ be a set of *s* nonnegative integers. A family \mathcal{F} of subsets of [n] is called *k*-wise \mathcal{L} -intersecting if $|F_1 \cap F_2 \cap \cdots \cap F_k| \in \mathcal{L}$ for every collection of *k* distinct subsets in \mathcal{F} . When k = 2, such a family \mathcal{F} is called \mathcal{L} -intersecting. \mathcal{F} is *r*-uniform if it is a collection of *r*-subsets of [n]. Thus, a *r*-uniform intersecting family is \mathcal{L} -intersecting for $\mathcal{L} = \{1, 2, ..., r - 1\}$.

In 1961, Erdös, Ko, and Rado [2] proved the following classical result.

Theorem 1.1 (Erdös, Ko, and Rado, 1961 [2]). Let $n \ge 2k$ and let A be a k-uniform intersecting family of subsets of [n]. Then, $|A| \le {\binom{n-1}{k-1}}$ with equality only when A consists of all k-subsets containing a common element.

To date, many intersection theorems have appeared in the literature, see [8] for a brief survey on theorems about \mathcal{L} -intersecting families. Here are well-known Frankl–Wilson theorem [5] and Alon–Babai–Suzuki theorem [1].

Theorem 1.2 (Frankl and Wilson, 1981). Let $\mathcal{L} = \{l_1, l_2, \dots, l_s\}$ be a set of s nonnegative integers. If \mathcal{A} is an \mathcal{L} -intersecting family of subsets of [n], then

 $|\mathcal{A}| \leq \binom{n}{s} + \binom{n}{s-1} + \dots + \binom{n}{0}.$

Theorem 1.3 (Alon, Babai, and Suzuki, 1991). Let $\mathcal{L} = \{l_1, l_2, \dots, l_s\}$ be a set of s nonnegative integers and $K = \{k_1, k_2, \dots, k_r\}$ be a set of integers satisfying $k_i > s - r$ for every i. Suppose that $\mathcal{A} = \{A_1, A_2, \dots, A_m\}$ is a family of subsets of [n] such that

http://dx.doi.org/10.1016/j.disc.2017.04.025 0012-365X/© 2017 Elsevier B.V. All rights reserved.

E-mail address: jliu@emich.edu (J. Liu).

 $|A_i| \in K$ for every $1 \le i \le m$ and $|A_i \cap A_j| \in \mathcal{L}$ for every pair $i \ne j$. Then,

$$m \leq \binom{n}{s} + \binom{n}{s-1} + \cdots + \binom{n}{s-r+1}.$$

Stronger bounds can be obtained if information about the specific set \mathcal{L} is used. To that end, Snevily [12] proved in 2003 the following theorem conjectured in 1994 by himself [10], which provides a common generalization of Frankl–Füredi theorem [4] (where $\mathcal{L} = \{1, 2, ..., s\}$) and Frankl–Wilson theorem (Theorem 1.2).

Theorem 1.4 (Snevily, 2003). Let $\mathcal{L} = \{l_1, l_2, ..., l_s\}$ be a set of s positive integers. If \mathcal{A} is an \mathcal{L} -intersecting family of subsets of [n], then

$$|\mathcal{A}| \leq \binom{n-1}{s} + \binom{n-1}{s-1} + \dots + \binom{n-1}{0}.$$

We will derive the following asymptotically best possible k-wise extension of Theorem 1.4.

Theorem 1.5. Let $k \ge 2$ and let $\mathcal{L} = \{l_1, l_2, ..., l_s\}$ be a set of *s* positive integers. If $\mathcal{A} = \{A_1, A_2, ..., A_m\}$ is a family of subsets of [n] such that $|A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}| \in \mathcal{L}$ for every collection of *k* distinct subsets in \mathcal{A} , then there exists $n_0 = n_0(k, s)$ such that for all $n \ge n_0$

$$m \leq \frac{k+s-1}{s+1} \binom{n-1}{s} + \sum_{i \leq s-1} \binom{n-1}{i}.$$

Clearly, Theorem 1.5 implies the following well-known theorem by Füredi and Sudakov [6]: simply add a new common element n + 1 to every subset in the family which satisfies the condition in the next theorem.

Theorem 1.6 (Füredi and Sudakov, 2004). Let $k \ge 2$ and let $\mathcal{L} = \{l_1, l_2, \ldots, l_s\}$ be a set of s nonnegative integers. If $\mathcal{A} = \{A_1, A_2, \ldots, A_m\}$ is a family of subsets of [n] such that $|A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}| \in \mathcal{L}$ for every collection of k distinct subsets in \mathcal{A} , then there exists $n_0 = n_0(k, s)$ such that for all $n \ge n_0$

$$m \leq \frac{k+s-1}{s+1} \binom{n}{s} + \sum_{i \leq s-1} \binom{n}{i}.$$

We remark that the bound in Theorem 1.5 is asymptotically the best possible, as shown by the following example: For $k \ge 3$, by applying Lemma 2.2 in [6] on the (n-1)-element set $[n-1] = \{1, 2, ..., n-1\}$ and then adding the new common element n to every subset in the family, we obtain a k-wise \mathcal{L} -intersecting family \mathcal{A} of subsets of [n] with $\mathcal{L} = \{1, 2, ..., s\}$ such that

$$|\mathcal{A}| \geq \frac{k-2}{s+1} \left(1-\frac{s}{n}\right) \binom{n-1}{s} + \sum_{i \leq s} \binom{n-1}{i} = \frac{k+s-1}{s+1} \left(1-\frac{s}{n}\right) \binom{n-1}{s} + \sum_{i \leq s-1} \binom{n-1}{i}.$$

The next conjecture provides a common generalization to all existing non-modular \mathcal{L} -intersection theorems in the literature if it is true.

Conjecture 1.7. Let $\mathcal{L} = \{l_1, l_2, \dots, l_s\}$ be a set of *s* nonnegative integers with $l_1 < l_2 < \dots < l_s$ and $K = \{k_1, k_2, \dots, k_r\}$ be a set of integers satisfying $k_i > s - r$ for every *i*. Suppose that $\mathcal{A} = \{A_1, A_2, \dots, A_m\}$ is a family of subsets of [n] such that $|A_i| \in K$ for every $1 \le i \le m$ and $|A_i \cap A_j| \in \mathcal{L}$ for every pair $i \ne j$. Then,

$$m \leq \binom{n-l_1}{s} + \binom{n-l_1}{s-1} + \cdots + \binom{n-l_1}{s-r+1}.$$

The classical Erdös–Ko–Rado theorem (Theorem 1.1) is the special case of Conjecture 1.7 with $l_1 \ge 1$, r = 1, and $\mathcal{L} = \{1, 2, ..., k - 1\}$; the well-known theorem for *t*-intersecting family of *k*-subsets of [n] by Erdös, Ko, and Rado [2], Frankl [3], and Wilson [13] is the special case with $l_1 = t$, r = 1, and $\mathcal{L} = \{t, t + 1, ..., k - 1\}$; the Frankl–Wilson Theorem (Theorem 1.2) is the special case $l_1 \ge 0$ and r = n; the well-known Alon–Babai–Suzuki theorem (Theorem 1.3) is the special case with $l_1 \ge 0$; the Snevily theorem (Theorem 1.4) is the special case with $l_1 \ge 1$ and r = n; and the well-known Ray–Chaudhuri–Wilson theorem [9] is the special case with $l_1 \ge 0$ and r = 1. The bound in the conjecture is the best possible, as shown by the family of all subsets of [n] with sizes at most $s + l_1$ and at least $s - r + 1 + l_1$ which contain all $1, 2, ..., l_1$, where $\mathcal{L} = \{l_1, l_1 + 1, ..., s + l_1 - 1\}$.

2. Preliminaries

Throughout this section, we denote $[n] = \{1, 2, ..., n\}$ and use $x = (x_1, x_2, ..., x_n)$ to denote a vector of n variables with each variable x_i taking values 0 or 1. A polynomial f(x) in n variables x_i , $1 \le i \le n$, is called *multilinear* if the power of

Download English Version:

https://daneshyari.com/en/article/5776862

Download Persian Version:

https://daneshyari.com/article/5776862

Daneshyari.com