Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

3-Restricted arc connectivity of digraphs*

Shangwei Lin^{a,b,*}, Ya'nan Jin^a, Chunfang Li^a

^a School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China
^b Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China

ARTICLE INFO

Article history: Received 11 October 2016 Received in revised form 6 May 2017 Accepted 9 May 2017

Keywords: Network Digraph Connectivity Minimum degree

ABSTRACT

The *k*-restricted arc connectivity of digraphs is a common generalization of the arc connectivity and the restricted arc connectivity. An arc subset *S* of a strong digraph *D* is a *k*-restricted arc cut if D - S has a strong component D' with order at least *k* such that D - V(D') contains a connected subdigraph with order at least *k*. The *k*-restricted arc connectivity $\lambda^k(D)$ of a digraph *D* is the minimum cardinality over all *k*-restricted arc cuts of *D*.

Let *D* be a strong digraph with order $n \ge 6$ and minimum degree $\delta(D)$. In this paper, we first show that $\lambda^3(D)$ exists if $\delta(D) \ge 3$ and, furthermore, $\lambda^3(D) \le \xi^3(D)$ if $\delta(D) \ge 4$, where $\xi^3(D)$ is the minimum 3-degree of *D*. Next, we prove that $\lambda^3(D) = \xi^3(D)$ if $\delta(D) \ge \frac{n+3}{2}$. Finally, we give examples showing that these results are best possible in some sense. © 2017 Elsevier B.V. All rights reserved.

1. Terminology and introduction

For graph-theoretical terminology and notation not defined here we follow [4]. We only consider finite digraphs without loops and multiple arcs. The set of vertices and the set of arcs of a digraph *D* are denoted by *V*(*D*) and *A*(*D*), respectively. In a digraph *D*, the *out-neighborhood* of a vertex *x* is the set $N_D^+(x) = \{v \in V(D) : xv \in A(D)\}$ and the *out-degree* of *x* is $d_D^+(x) = |N^+(x)|$. The *in-neighborhood* and *in-degree* of *x* are defined analogously. The *minimum degree* of *D* is $\delta(D) = \min\{\delta^+(D), \delta^-(D)\}$, where $\delta^+(D) = \min\{d^+(x) : x \in V(D)\}$ is the *minimum out-degree* of *D* and $\delta^-(D) = \min\{d^-(x) : x \in V(D)\}$ is the *minimum in-degree* of *D*.

For a pair X, Y of nonempty vertex sets of a digraph D, we define $A(X, Y) = \{xy \in A(D) : x \in X, y \in Y\}$. For brevity, we denote $\overline{X} = V(D) \setminus X$. If $Y = \overline{X}$, we write $\partial_D^+(X)$ or $\partial_D^-(Y)$ instead of A(X, Y). In this paper, we will not distinguish a set of cardinality 1 from its only element. For example, the arc set $\partial_D^+(\{x\})$ will be abbreviated to $\partial_D^+(x)$. Clearly, $d_D^+(x) = |\partial_D^+(x)|$ for all $x \in V(D)$. We will usually omit the subscript for the digraph when it is clear which digraph is meant.

For $X \subseteq V(D)$, the subdigraph of D induced by X is denoted by D[X]. The underlying graph UG(D) of a digraph D is the unique graph obtained from D by deleting the orientation of all arcs and keeping one edge of a pair of multiple edges. A digraph D is connected if its underlying graph UG(D) is connected. A digraph D is strongly connected (or, just, strong) if, for every pair x, y of distinct vertices in D, there exists a directed (x, y)-path and a directed (y, x)-path. We define a digraph with one vertex to be strong. A connected (strong) component of a digraph D is a maximal induced subdigraph of D which is connected (strong). If D has p strong components, then these strong components can be labeled D_1, \ldots, D_p such that there is no arc from D_j to D_i unless j < i [4]. We call such an ordering an acyclic ordering of the strong component of D. A strong component of D that has no entering (leaving) arcs is called an initial (terminal) strong component of D.

http://dx.doi.org/10.1016/j.disc.2017.05.004 0012-365X/© 2017 Elsevier B.V. All rights reserved.

 $[\]stackrel{\circ}{\sim}$ This work is supported by the National Natural Science Foundation of China (61202017) and the Postdoctoral Science Foundation of China (2012M510579).

^{*} Corresponding author at: School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China. *E-mail address:* shangweilin@sxu.edu.cn (S. Lin).

The underlying topology of a processor interconnection network or a communications network can be modeled by a digraph, in which the vertices represent nodes such as processors or stations, and the arcs represent links between the nodes. Therefore, the reliability of a network can be measured by the arc connectivity of a digraph. For a digraph *D*, an arc set *S* of *D* is an *arc cut*, if D - S is not strong. The *arc connectivity* $\lambda(D)$ of *D* is the minimum cardinality of all arc cuts of *D*.

It is well known that $\lambda(D) \leq \delta(D)$ for a general digraph *D*. A strong digraph *D* with $\lambda(D) = \delta(D)$ is said to be λ -optimal. Many sufficient conditions for a digraph to be λ -optimal were presented, including the following. (For more results in this direction, see the survey by Hellwig and Volkmann [11].)

Theorem 1.1 ([8]). If D is a strong digraph with order n and minimum degree $\delta(D) \geq \frac{n-1}{2}$, then D is λ -optimal.

As a more refined index than the arc connectivity, Volkmann [12] introduced the concept of restricted arc connectivity. Let *D* be a strong digraph. An arc subset *S* is a *restricted arc cut* of *D* if D - S has a strong component D_1 with order at least 2 such that $D - V(D_1)$ contains an arc. If such an arc cut exists, then *D* is called a λ' -connected digraph and the restricted arc connectivity of *D*, denoted by $\lambda'(D)$, is defined to be the minimum cardinality over all restricted arc cuts of *D*.

In order to give an upper bound on restricted arc connectivity, Wang and Lin [13] introduced the notion of minimum arc-degree. Let *xy* be an arc of *D* and let

$$\Omega(xy) = \Omega_{xy} = \{\partial^+(\{x, y\}), \partial^-(\{x, y\}), \partial^-(x) \cup \partial^+(y), \partial^+(x) \cup \partial^-(y)\}.$$

The arc-degree of the arc xy is defined as $\xi'(xy) = \min\{|S| : S \in \Omega_{xy}\}$ and the minimum arc-degree of D is $\xi'(D) = \min\{\xi'(xy) : xy \in A(D)\}$. In [13], the following result is shown.

Theorem 1.2 ([13]). Let D be a strong digraph with $\delta^+(D) \ge 3$ or $\delta^-(D) \ge 3$. Then, D is λ' -connected and $\lambda'(D) \le \xi'(D)$.

In 2013, Balbuena et al. [3] proved a similar result.

Theorem 1.3 ([3]). Let *D* be a strong digraph of order at least 4 and minimum degree $\delta(D) \geq 2$. Then, *D* is λ' -connected and $\lambda'(D) \leq \xi'(D)$.

In [13], the concept of λ' -optimality was introduced. A λ' -connected digraph D is λ' -optimal if $\lambda'(D) = \xi'(D)$. Some sufficient conditions for digraphs to attain λ' -optimality can be found in [1,2,5,6,9,10,13]. The following result given in [13] is the first one in this direction: Let D be a strong digraph with order at least 4. If $|N^+(u) \cap N^-(v)| \ge 3$ for all pairs of vertices u, v with $uv \notin A(D)$, then D is λ' -optimal. An immediate consequence of this result is the following.

Corollary 1.1. If *D* is a strong digraph with order $n \ge 4$ and minimum degree $\delta(D) \ge \frac{n+1}{2}$, then *D* is λ' -optimal.

Motivated by the *k*-restricted edge connectivity of undirected graphs, which is introduced by Fàbrega and Fiol [7], we introduce the following concept.

Definition 1.1. Let *D* be a strong digraph. An arc subset *S* is a *k*-restricted arc cut of *D* if D - S has a strong component *D'* with order at least *k* such that D - V(D') contains a connected subdigraph with order at least *k*. If such a *k*-restricted arc cut exists, then *D* is called λ^k -connected. The *k*-restricted arc connectivity $\lambda^k(D)$ of a λ^k -connected digraph *D* is the minimum cardinality over all *k*-restricted arc cuts.

Clearly, $\lambda^1(D) = \lambda(D)$ and $\lambda^2(D) = \lambda'(D)$. Therefore, the *k*-restricted arc connectivity of digraphs is a common generalization of the arc connectivity and the restricted arc connectivity.

The minimum degree and the minimum arc degree of a digraph can be extended as follows. Let *D* be a digraph and let *k* be a positive integer. For any $X \subseteq V(D)$, let

$$\Omega(X) = \{\partial^+(X_1) \cup \partial^-(X \setminus X_1) : X_1 \subseteq X\}$$

and

 $\xi(X) = \min\{|S| : S \in \Omega(X)\}.$

Define the minimum k-degree of D to be

 $\xi^{k}(D) = \min\{\xi(X) : X \subseteq V(D), |X| = k, D[X] \text{ is connected}\}.$

Clearly, $\xi^1(D) = \delta(D)$ and $\xi^2(D) = \xi'(D)$. In Section 2, we prove the following result, which is a generalization of Theorem 1.2.

Theorem 1.4. Let *D* be a strong digraph with $\delta^+(D) \ge 2k - 1$ or $\delta^-(D) \ge 2k - 1$. Then, *D* is λ^k -connected and $\lambda^k(D) \le \xi^k(D)$. Inspired by Theorem 1.3, we prove the following results in Sections 2 and 3, respectively.

Theorem 1.5. Let *D* be a strong digraph with order at least 6. If $\delta(D) \ge 3$, then *D* is λ^3 -connected.

Theorem 1.6. Let *D* be a strong digraph with $|V(D)| \ge 6$ and $\delta(D) \ge 4$. Then, *D* is λ^3 -connected and satisfies $\lambda^3(D) \le \xi^3(D)$.

Download English Version:

https://daneshyari.com/en/article/5776863

Download Persian Version:

https://daneshyari.com/article/5776863

Daneshyari.com