Sums of powers of Catalan triangle numbers

Pedro J. Miana ${ }^{\text {a,* }}$, Hideyuki Ohtsuka ${ }^{\text {b }}$, Natalia Romero ${ }^{\text {c }}$
${ }^{\text {a }}$ Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza, 50009 Zaragoza, Spain
${ }^{\text {b }}$ Bunkyo University High School, 1191-7, Kami, Ageo-city, Saitama Pref., 362-0001, Japan
${ }^{\text {c }}$ Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain

ARTICLE INFO

Article history:

Received 21 August 2016
Received in revised form 16 April 2017
Accepted 13 May 2017

Keywords

Catalan numbers
Combinatorial identities
Binomial coefficients
Catalan triangle

Abstract

In this paper, we consider combinatorial numbers $\left(C_{m, k}\right)_{m>1, k>0}$, mentioned as Catalan triangle numbers where $C_{m, k}:=\binom{m-1}{k}-\binom{m-1}{k-1}$. These numbers unify the entries of the Catalan triangles $B_{n, k}$ and $A_{n, k}$ for appropriate values of parameters m and k, i.e., $B_{n, k}=$ $C_{2 n, n-k}$ and $A_{n, k}=C_{2 n+1, n+1-k}$. In fact, these numbers are suitable rearrangements of the known ballot numbers and some of these numbers are the well-known Catalan numbers C_{n} that is $C_{2 n, n-1}=C_{2 n+1, n}=C_{n}$.

We present identities for sums (and alternating sums) of $C_{m, k}$, squares and cubes of $C_{m, k}$ and, consequently, for $B_{n, k}$ and $A_{n, k}$. In particular, one of these identities solves an open problem posed in Gutiérrez et al. (2008). We also give some identities between $\left(C_{m, k}\right)_{m \geq 1, k \geq 0}$ and harmonic numbers $\left(H_{n}\right)_{n \geq 1}$. Finally, in the last section, new open problems and identities involving $\left(C_{n}\right)_{n \geq 0}$ are conjectured.

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

The well-known Catalan numbers $\left(C_{n}\right)_{n \geq 0}$ given by the formula

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n \geq 0
$$

appear in a wide range of problems. For instance, the Catalan number C_{n} counts the number of ways to triangulate a regular polygon with $n+2$ sides; or, the number of ways that $2 n$ people seat around a circular table are simultaneously shaking hands with another person at the table in such a way that none of the arms cross each other, see for example [19,22].

The Catalan numbers may be defined recursively by $C_{0}=1$ and $C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-1-i}$ for $n \geq 1$ and first terms in this sequence are
$1,1,2,5,14,42,132, \ldots$.
Catalan numbers have been studied in depth in many papers and monographs (see for example [4-12,16-22]), and the Catalan sequence is probably the most frequently encountered sequence.

In this paper, we consider combinatorial numbers $\left(C_{m, k}\right)_{m \geq 1, k \geq 0}$ given by

$$
\begin{equation*}
C_{m, k}:=\frac{m-2 k}{m}\binom{m}{k}=\binom{m-1}{k}-\binom{m-1}{k-1} . \tag{0.1}
\end{equation*}
$$

[^0]Note that the number $C_{m, k}$ gives the difference of ways to choose a subset of size k instead of $k-1$ elements, disregarding their order, from a set of m elements. We collect the first values in the following table:

$m \backslash k$	0	1	2	3	4	5	6	7	8	9	10	\ldots
1	1	-1										
2	1	0	-1									
3	1	1	-1	-1								
4	1	2	0	-2	-1							
5	1	3	2	-2	-3	-1						
6	1	4	5	0	-5	-4	-1					
7	1	5	9	5	-5	-9	-5	-1				
8	1	6	14	14	0	-14	-14	-6	-1			
9	1	7	20	28	14	-14	-28	-20	-7	-1		
10	1	8	27	48	42	0	-42	-48	-27	-8	-1	
\cdots												

Notice that, these combinatorial numbers $\left(C_{m, k}\right)_{m \geq 1, k \geq 0}$ are suitable rearrangements of the known ballot numbers $\left(a_{m, k}\right)$ with $a_{m, k}=\frac{k+1}{m+1}\binom{2 m-k}{m}$ for $m \geq 0$ and $0 \leq k \leq m$, i.e.,

$$
a_{m, k}=C_{2 m+1-k, m-k}, \quad C_{m, k}=a_{m-k-1, m-2 k-1}
$$

see example [1]. Moreover, although these numbers $\left(C_{m, k}\right)_{m \geq 1, k \geq 0}$ have been not systematically treated in the literature, some identities may be rewritten in terms of them, for example, the following identity

$$
\begin{equation*}
\sum_{k=0}^{n} C_{m, k}\binom{m}{k}^{2}=\binom{m-1}{n} \sum_{j=0}^{m-1}\binom{j}{n}\binom{j}{m-n-1} \tag{0.3}
\end{equation*}
$$

was proven in [13] for $m, n \geq 1$.
These combinatorial numbers $\left(C_{m, k}\right)_{m \geq 1, k \geq 0}$ are closely related to Catalan numbers $\left(C_{n}\right)_{n \geq 0}$ and appear in several Catalan triangles. For instance, $C_{2 n, n-k}=B_{n, k}$, where

$$
B_{n, k}=\frac{k}{n}\binom{2 n}{n-k}, \quad 0 \leq k \leq n
$$

(see [16]) and also $C_{2 n+1, n+1-k}=A_{n, k}$, where

$$
A_{n, k}=\frac{2 k-1}{2 n+1}\binom{2 n+1}{n+1-k}, \quad 1 \leq k \leq n+1
$$

(see [12]). The sequence ($A_{n, k}$) is an example of Catalan-like numbers considered in [2].
This paper is organized as follows. In the first section, we establish the sum of $C_{m, k}$ and their alternating sums, $(-1)^{k} C_{m, k}$ in Theorem 1.2. Next, as a consequence in Corollary 1.3, we obtain the alternating sum of the entries of the two Catalan triangle numbers $\left(B_{n, k}\right)_{n \geq k \geq 1}$ and $\left(A_{n, k}\right)_{n+1 \geq k \geq 1}$. Also, we present a recurrence relation which is satisfied by the numbers $\left(C_{m, k}\right)_{m \geq 1, k \geq 0}$.

Identities which involved harmonic numbers $\left(H_{n}\right)_{n \geq 1}$ where

$$
\begin{equation*}
H_{n}=\sum_{k=1}^{n} \frac{1}{k}, \quad n \in \mathbb{N} \tag{0.4}
\end{equation*}
$$

have received a notable attention in last decades. We only mention shortly papers [5,14,20], the monograph [3, Chapter 7] and the reference therein.

At the end of the first section, we present a new identity which involves harmonic numbers $\left(H_{n}\right)_{n \geq 1}$ and Catalan triangle numbers $\left(C_{m, k}\right)_{m \geq 1, k \geq 0}$ in Theorem 1.4 (and then for $B_{n, k}$ and $A_{n, k}$ in Corollary 1.5). This identity includes, as particular case, a known equality proved in [14].

In the second section, we obtain the value of $\sum_{k=0}^{n} C_{m, k}^{2}$ and $\sum_{k=0}^{n}(-1)^{k} C_{m, k}^{2}$ for $m, n \geq 1$ in Theorem 2.1. We also show two identities which allow us to decompose squares of combinatorial numbers as sum of squares of other combinatorial numbers. In particular, the nice identity

$$
\binom{2 n}{n}^{2}=\sum_{k=0}^{n} \frac{3 n-2 k}{n}\binom{2 n-1-k}{n-1}^{2}, \quad n \geq 1
$$

is presented in Theorem 2.3 and seems to be new.
The third section is dedicated to the sum of cubes of numbers $\left(C_{m, k}\right)_{m \geq 1, k \geq 0}$. For $m \geq 1$ and $n \geq 1$, we present the identity

$$
\sum_{k=0}^{n} C_{m, k}^{3}=4\binom{m-1}{n}^{3}-3\binom{m-1}{n} \sum_{j=0}^{m-1}\binom{j}{n}\binom{j}{m-n-1}
$$

https://daneshyari.com/en/article/5776868

Download Persian Version:
https://daneshyari.com/article/5776868

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: pjmiana@unizar.es (P.J. Miana), otsukahideyuki@gmail.com (H. Ohtsuka), natalia.romero@unirioja.es (N. Romero).

