Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Sums of powers of Catalan triangle numbers

Pedro J. Miana^{a,*}, Hideyuki Ohtsuka^b, Natalia Romero^c

^a Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza, 50009 Zaragoza, Spain

^b Bunkyo University High School, 1191-7, Kami, Ageo-city, Saitama Pref., 362-0001, Japan

^c Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain

ARTICLE INFO

Article history: Received 21 August 2016 Received in revised form 16 April 2017 Accepted 13 May 2017

Keywords: Catalan numbers Combinatorial identities Binomial coefficients Catalan triangle

ABSTRACT

In this paper, we consider combinatorial numbers $(C_{m,k})_{m\geq 1,k\geq 0}$, mentioned as Catalan triangle numbers where $C_{m,k} := \binom{m-1}{k} - \binom{m-1}{k-1}$. These numbers unify the entries of the Catalan triangles $B_{n,k}$ and $A_{n,k}$ for appropriate values of parameters m and k, i.e., $B_{n,k} = C_{2n,n-k}$ and $A_{n,k} = C_{2n+1,n+1-k}$. In fact, these numbers are suitable rearrangements of the known ballot numbers and some of these numbers are the well-known Catalan numbers C_n that is $C_{2n,n-1} = C_{2n+1,n} = C_n$.

We present identities for sums (and alternating sums) of $C_{m,k}$, squares and cubes of $C_{m,k}$ and, consequently, for $B_{n,k}$ and $A_{n,k}$. In particular, one of these identities solves an open problem posed in Gutiérrez et al. (2008). We also give some identities between $(C_{m,k})_{m\geq 1,k\geq 0}$ and harmonic numbers $(H_n)_{n\geq 1}$. Finally, in the last section, new open problems and identities involving $(C_n)_{n>0}$ are conjectured.

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

The well-known Catalan numbers $(C_n)_{n\geq 0}$ given by the formula

$$C_n=\frac{1}{n+1}\binom{2n}{n}, \quad n\geq 0,$$

appear in a wide range of problems. For instance, the Catalan number C_n counts the number of ways to triangulate a regular polygon with n + 2 sides; or, the number of ways that 2n people seat around a circular table are simultaneously shaking bands with another person at the table in such a way that none of the arms cross each other, see for example [19,22]

hands with another person at the table in such a way that none of the arms cross each other, see for example [19,22]. The Catalan numbers may be defined recursively by $C_0 = 1$ and $C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}$ for $n \ge 1$ and first terms in this sequence are

Catalan numbers have been studied in depth in many papers and monographs (see for example [4–12,16–22]), and the Catalan sequence is probably the most frequently encountered sequence.

In this paper, we consider combinatorial numbers $(C_{m,k})_{m \ge 1,k \ge 0}$ given by

$$C_{m,k} := \frac{m-2k}{m} \binom{m}{k} = \binom{m-1}{k} - \binom{m-1}{k-1}.$$
(0.1)

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2017.05.006 0012-365X/© 2017 Elsevier B.V. All rights reserved.

E-mail addresses: pjmiana@unizar.es (P.J. Miana), otsukahideyuki@gmail.com (H. Ohtsuka), natalia.romero@unirioja.es (N. Romero).

Note that the number $C_{m,k}$ gives the difference of ways to choose a subset of size k instead of k - 1 elements, disregarding their order, from a set of m elements. We collect the first values in the following table:

$m \setminus k$	0	1	2	3	4	5	6	7	8	9	10			
1	1	-1												
2	1	0	$^{-1}$											
3	1	1	$^{-1}$	$^{-1}$										
4	1	2	0	$^{-2}$	-1									
5	1	3	2	$^{-2}$	-3	$^{-1}$							(0	2)
6	1	4	5	0	$^{-5}$	-4	$^{-1}$						(0	.2)
7	1	5	9	5	$^{-5}$	-9	-5	-1						
8	1	6	14	14	0	-14	-14	-6	$^{-1}$					
9	1	7	20	28	14	-14	-28	-20	-7	-1				
10	1	8	27	48	42	0	-42	-48	-27	-8	-1			
				•••										

Notice that, these combinatorial numbers $(C_{m,k})_{m \ge 1,k \ge 0}$ are suitable rearrangements of the known ballot numbers $(a_{m,k})$ with $a_{m,k} = \frac{k+1}{m+1} \binom{2m-k}{m}$ for $m \ge 0$ and $0 \le k \le m$, i.e.,

$$a_{m,k} = C_{2m+1-k,m-k}, \qquad C_{m,k} = a_{m-k-1,m-2k-1},$$

see example [1]. Moreover, although these numbers $(C_{m,k})_{m \ge 1,k \ge 0}$ have been not systematically treated in the literature, some identities may be rewritten in terms of them, for example, the following identity

$$\sum_{k=0}^{n} C_{m,k} {\binom{m}{k}}^2 = {\binom{m-1}{n}} \sum_{j=0}^{m-1} {\binom{j}{n}} {\binom{j}{m-n-1}},$$
(0.3)

was proven in [13] for $m, n \ge 1$.

These combinatorial numbers $(C_{n,k})_{m \ge 1,k \ge 0}$ are closely related to Catalan numbers $(C_n)_{n \ge 0}$ and appear in several Catalan triangles. For instance, $C_{2n,n-k} = B_{n,k}$, where

$$B_{n,k} = \frac{k}{n} \begin{pmatrix} 2n \\ n-k \end{pmatrix}, \quad 0 \le k \le n.$$

(see [16]) and also $C_{2n+1,n+1-k} = A_{n,k}$, where

$$A_{n,k} = \frac{2k-1}{2n+1} \binom{2n+1}{n+1-k}, \quad 1 \le k \le n+1,$$

(see [12]). The sequence $(A_{n,k})$ is an example of Catalan-like numbers considered in [2].

This paper is organized as follows. In the first section, we establish the sum of $C_{m,k}$ and their alternating sums, $(-1)^k C_{m,k}$ in Theorem 1.2. Next, as a consequence in Corollary 1.3, we obtain the alternating sum of the entries of the two Catalan triangle numbers $(B_{n,k})_{n \ge k \ge 1}$ and $(A_{n,k})_{n+1 \ge k \ge 1}$. Also, we present a recurrence relation which is satisfied by the numbers $(C_{m,k})_{m \ge 1,k \ge 0}$. Identities which involved harmonic numbers $(H_n)_{n \ge 1}$ where

$$H_n = \sum_{k=1}^n \frac{1}{k}, \quad n \in \mathbb{N},$$

$$(0.4)$$

have received a notable attention in last decades. We only mention shortly papers [5,14,20], the monograph [3, Chapter 7] and the reference therein.

At the end of the first section, we present a new identity which involves harmonic numbers $(H_n)_{n\geq 1}$ and Catalan triangle numbers $(C_{m,k})_{m\geq 1,k\geq 0}$ in Theorem 1.4 (and then for $B_{n,k}$ and $A_{n,k}$ in Corollary 1.5). This identity includes, as particular case, a known equality proved in [14].

In the second section, we obtain the value of $\sum_{k=0}^{n} C_{m,k}^{2}$ and $\sum_{k=0}^{n} (-1)^{k} C_{m,k}^{2}$ for $m, n \ge 1$ in Theorem 2.1. We also show two identities which allow us to decompose squares of combinatorial numbers as sum of squares of other combinatorial numbers. In particular, the nice identity

$$\binom{2n}{n}^{2} = \sum_{k=0}^{n} \frac{3n-2k}{n} \binom{2n-1-k}{n-1}^{2}, \qquad n \ge 1,$$

is presented in Theorem 2.3 and seems to be new.

The third section is dedicated to the sum of cubes of numbers $(C_{m,k})_{m>1,k>0}$. For $m \ge 1$ and $n \ge 1$, we present the identity

$$\sum_{k=0}^{n} C_{m,k}^{3} = 4 \binom{m-1}{n}^{3} - 3 \binom{m-1}{n} \sum_{j=0}^{m-1} \binom{j}{n} \binom{j}{m-n-1},$$

Download English Version:

https://daneshyari.com/en/article/5776868

Download Persian Version:

https://daneshyari.com/article/5776868

Daneshyari.com