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a b s t r a c t

We present families of large undirected and directed Cayley graphs whose construction
is related to butterfly networks. One approach yields, for every large k and for values of d
taken from a large interval, the largest known Cayley graphs and digraphs of diameter k
and degree d. Another method yields, for sufficiently large k and infinitely many values
of d, Cayley graphs and digraphs of diameter k and degree d whose order is exponentially
larger in k than any previously constructed. In the directed case, these are within a linear
factor in k of the Moore bound.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The goal of the degree-diameter problem is to determine the largest possible order of a graph or digraph, perhaps restricted
to some special class, with given maximum (out)degree and diameter. For an overview of progress on a wide variety of
approaches to this problem, see the survey by Miller & Širáň [6].

Our concern here is with large Cayley graphs and digraphs. Recall that, for a group G and a unit-free generating subset S
of G, the Cayley digraph of G generated by S has vertex set G and a directed edge from g to gs for all g ∈ G and s ∈ S. If S is
symmetric, i.e. S = S−1, then the corresponding undirected simple graph is the Cayley graph of G generated by S. The Cayley
(di)graph is thus regular of (out)degree |S| and vertex-transitive.

We are interested in graphs and digraphs of degree d and diameter k, for arbitrary large k and varying d. If a construction
yields graphs of order nd,k, we say that it has asymptotic order f (d, k) if, for fixed k,

lim
d→∞

nd,k

f (d, k)
= 1.

No graph or digraph can be larger than the corresponding Moore bound. For undirected graphs, this bound is Md,k =

1+
d

d−2

(
(d− 1)k − 1

)
if d > 2. In the directed case, it is DMd,k =

1
d−1

(
dk+1

− 1
)
if d > 1. In both cases, the Moore bound has

asymptotic order dk.
Previously, for arbitrary degree and diameter, the largest known directed Cayley graphs were obtained by Vetrík [7] and

Abas & Vetrík [1], whose constructions have asymptotic order k
( d
2

)k for even k, and 2k
( d
2

)k for odd k. Our construction yields
Cayley digraphs whose order is asymptotically (k − 1)dk−1. For fixed diameter k ⩾ 8, these digraphs are larger than those
in [7] and [1] for every value of d in a large interval. We also construct, for fixed k and infinitely many values of d, Cayley
digraphs whose asymptotic order exceeds dk

e2k
, a factor of 2k−1

e2k2
larger than those of Abas & Vetrík, and within a linear factor

in k of the Moore bound.
The undirected case is similar. Previously, the largest known Cayley graphs were obtained by Macbeth, Šiagiová, Širáň &

Vetrík [5], whose construction has asymptotic order k
( d
3

)k. For d − k ̸≡ 3 (mod 4), we construct Cayley graphs whose order
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is asymptotically (k − 1)
( d
2

)k−1. For sufficiently large diameter k, these graphs are larger than those in [5] for every suitable
value of d in a large interval. We also construct, for given k and infinitely many values of d, Cayley graphs whose asymptotic
order is at least 1

e2k

( d
2

)k, a factor of 1
e2k2

( 3
2

)k larger than those in [5].
Our constructions are based on a two-parameter family of groups. For t ⩾ 2, let Zt = Z/tZ be the additive group of

integers modulo t , and for r ⩾ 2, let Z r
t denote the product Zt × · · · ×Zt , where Zt occurs r times, considered as an additive

group of vectors. Let α be the automorphism of Z r
t , defined by α(v0, . . . , vr−1) = (vr−1, v0, . . . , vr−2), that cyclically shifts

coordinates rightwards by one, and consider the semidirect product G = Z r
t ⋊ Zr , of order r t r , with the group operation

given by (u, s)·(v, s′) = (u + αs(v), s + s′), for u, v ∈ Z r
t and s, s′ ∈ Zr . We write elements of G in the form (v0, . . . , vr−1; s),

where each vi ∈ Zt and s ∈ Zr . Using this notation, the group operation is

(u0, . . . , ur−1; s)·(v0, . . . , vr−1; s′) = (u0 + vr−s, . . . , us−1 + vr−1, us + v0, . . . , ur−1 + vr−1−s; s + s′),

arithmetic in the subscripts being performed modulo r . The group G is used to create all our Cayley graphs and digraphs.
The Cayley digraph generated by elements of G of the form (a, 0, . . . , 0; 1), a ∈ Zt is isomorphic to the base-t order-r

(wrapped) butterfly network, Bt (r), so called because it is composed of rt r−1 edge-disjoint t-butterflies (copies of the complete
bipartite graph Kt,t ); see [2, Figure 2]. Butterfly networks are closely related to the de Bruijn graphs [3], the directed base-t
order-r de Bruijn graph being a coset graph of Bt (r) [2, Theorem 4.4].

Cayley graphs and digraphs of G were used previously by Macbeth, Šiagiová, Širáň & Vetrík [5] and Vetrík [7] in the
constructions mentioned above, though in neither case is the connection to the butterfly networks made explicit. Each of
our results is a consequence of choosing an appropriate set of generators for G. We make use of two distinct constructions.

2. The first construction

We present the directed case first, since it is slightly simpler.

Theorem 1. For any k ⩾ 4 and d ⩾ k − 1, there exist Cayley digraphs that have diameter k, outdegree d, and order
(k − 1)(d − k + 3)k−1.

Proof. Let r = k − 1 and t = d − k + 3, and let the underlying group of the Cayley digraph be G = Z r
t ⋊ Zr . The order of G

is r t r = (k − 1)(d − k + 3)k−1.

To generate the Cayley digraph we use the t shift and add elements (a, 0, . . . , 0; 1), for each a ∈ Zt , together with the
remaining r − 2 nonzero cyclic shift elements (0, . . . , 0; s), for 2 ⩽ s ⩽ r − 1. Thus the digraph has outdegree t + r − 2 = d.

It also has diameter r + 1 = k. Every element is the product of r shift and add operations (establishing the vector) and
possibly a single cyclic shift (to establish the final shift value if it is nonzero). On the other hand, if s ̸= 0 then (1, . . . , 1; s)
cannot be obtained as a product of fewer than k generators. □

Clearly, the butterfly network Bt (r) is a subdigraph of the Cayley digraph of Theorem 1. The additional edges in our
construction, corresponding to the cyclic shift elements, consist of t r vertex-disjoint copies of the complete digraph on r
vertices with a directed r-cycle removed.

Vetrík [7] presents, for any k ⩾ 3 and d ⩾ 4, a family of Cayley digraphs of diameter k, degree d, and order k
⌊ d

2

⌋k
. For odd

diameters, Abas & Vetrík [1] improve this result by a factor of two, constructing Cayley digraphs of diameter at most k and
degree d of order 2k

⌊ d
2

⌋k
. Clearly, for large enough d, these digraphs are bigger than those of Theorem 1. However, for any

given diameter k ⩾ 8, it can be confirmed (using a computer algebra system, or otherwise) that the digraphs of Theorem 1
are larger than those of Vetrík and Abas & Vetrík if

2k + 2 ln k < d < 2k−1(1 −
1
k

)
− k2.

For specific values of the degree, we can do much better. If we set d = k2 − 3k, then the digraphs of Theorem 1 have orders
at least DMd,k/ek, within a linear factor of the Moore bound, and exceeding those of Abas & Vetrík by a factor of at least
2k−1/ek2, which exceeds 1 for k ⩾ 9.

For the undirected case, we simply add elements to the generating set to make it symmetric.

Theorem 2. For any k ⩾ 5 and d ⩾ k such that d − k ̸≡ 3 (mod 4), there exist Cayley graphs that have diameter k, degree d,
and order (k − 1)

(⌊ d−k
2

⌋
+ 2

)k−1.

Proof. Let r = k− 1 and t =
⌊ d−k

2

⌋
+ 2, and let G = Z r

t ⋊Zr . As generators for the Cayley graph of Gwe use the t elements
(a, 0, . . . , 0; 1), along with their inverses (0, . . . , 0, −a; −1), and the remaining r − 3 nonzero elements (0, . . . , 0; s) for
2 ⩽ s ⩽ r − 2. In addition, if d − k ≡ 1 (mod 4), in which case t is even, then the involution (0, . . . , 0, t

2 ; 0) is also included
as a generator.

Thus the graph has degree 2t + r − 3 + (d − kmod 2) = d. As in the directed case, it has diameter r + 1 = k. Every
element is the product of k−1 shift and add operations and possibly a single cyclic shift. On the other hand, if s ̸∈ {−1, 0, 1}
then (1, . . . , 1; s) cannot be obtained as a product of fewer than k generators, and G has such an element since r ⩾ 4. □
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