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a b s t r a c t

The linear 2-arboricity la2(G) of a graphG is the least integer k such thatG can be partitioned
into k edge-disjoint forests, whose components are paths of length at most 2. In this paper,
we prove that every planar graph G with ∆ = 10 has la2(G) ≤ 9. Using this result, we
correct an error in the proof of a result inWang (2016), which says that every planar graph
G satisfies la2(G) ≤ ⌈(∆ + 1)/2⌉ + 6.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Only simple and finite graphs are considered in this paper. For a graph G, we use V (G), E(G), δ(G), and ∆(G) (for short, ∆)
to denote, respectively, its vertex set, edge set, minimum degree, and maximum degree. An edge-partition of a graph G is a
decomposition of G into subgraphs G1,G2, . . . ,Gm such that E(G) = E(G1) ∪ E(G2) ∪ · · · ∪ E(Gm) and E(Gi) ∩ E(Gj) = ∅ for
i ̸= j. A linear k-forest is a graph whose components are paths of length at most k. The linear k-arboricity of G, denoted by
lak(G), is the least integerm such that G can be edge-partitioned intom linear k-forests.

The linear k-arboricity of a graph was first introduced by Habib and Péroche [5]. They posed the following conjecture,
where n = |V (G)| and k ≥ 2:

lak(G) ≤

⎧⎪⎪⎨⎪⎪⎩
⌈n∆ + 1
2⌊ kn

k+1⌋

⌉
if ∆ ̸= n − 1;⌈ n∆

2⌊ kn
k+1⌋

⌉
if ∆ = n − 1.

The linear k-arboricity of graphs has been extensively investigated [1,3,4,6]. Lih, Tong and Wang [7] proved that every
planar graph G has la2(G) ≤ ⌈(∆ + 1)/2⌉ + 12, and la2(G) ≤ ⌈(∆ + 1)/2⌉ + 6 if G moreover contains no 3-cycles. Recently,
Wang [8] improved this result by showing that every planar graph G has la2(G) ≤ ⌈(∆ + 1)/2⌉ + 6. Unfortunately, there is
a correctable error in the proof of the main result in [8], which has been found by the author herself, and independently by
Dr. Xin Liu (a private communication). Precisely, the following statement in page 41, line 22, in [8] is not necessarily true:

‘‘Similarly, we can show that dF2 (vi) ≤ β(vi).’’
In fact, when dG(v) = 15, dF ′

1
(vi) = 0, and dF ′

2
(vi) = 2, we have β(vi) = max{2, ⌈(dG(vi) − 11)/2⌉} = 2 and

dF2 (vi) = dF ′
2
(vi) + 1 = 3, which does not satisfy that dF2 (vi) ≤ β(vi).

In this paper, we first show that every planar graph Gwith∆ = 10 has la2(G) ≤ 9. Then, by using this result and adjusting
the proof of Theorem 2 in [8], we will correct this error and keep original result unchanged.
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2. Planar graphs with ∆ = 10

Given a plane graph G, let F (G) denote its face set. For f ∈ F (G), we use b(f ) to denote the closed boundary walk of f and
write f = [u1u2 · · · un] if u1, u2, . . . , un are the vertices on the boundary walk in clockwise order, with repeated occurrences
of vertices allowed. A vertex of degree k (at most k, at least k) is called a k-vertex (k−-vertex, k+-vertex). Similarly, we can
define k-face, k−-face, and k+-face. For a vertex v ∈ V (G) and an integer n ≥ 1, let ni(v) denote the number of i-vertices
adjacent to v in G.

To investigate the linear 2-arboricity of a graph G, we consider the linear edge-coloring of G, i.e., a mapping φ from E(G)
to the color set C such that every color class induces a subgraph whose components are paths of length at most 2. We call
such coloring linear-k-coloring of G if C contains k colors. Clearly, a graph G has linear 2-arboricity at most k if and only if G
is linear-k-colorable.

A function L is called an assignment for the graph G if it assigns a list L(e) of possible colors to each edge e of G. If G has a
linear edge-coloring φ such that φ(e) ∈ L(e) for all edges e, then we say that φ is an L-linear edge-coloring of G, or say that G
is L-linear edge-colorable.

Let Sm denote a star consisting ofm edges e1, e2, . . . , em, wherem ≥ 2. The following Lemma 1 was proved in [8].

Lemma 1 ([8]). Let Sm be a star and L be a list assignment for the edges in Sm satisfying the following conditions, then Sm is L-linear
edge-colorable.

(1)m = 2, and |L(ei)| ≥ 1 for i = 1, 2.
(2)m = 3, and |L(e3)| ≥ 2 and |L(ei)| ≥ 1 for i = 1, 2.
(3)m = 4, and |L(ei)| ≥ 2 for i = 3, 4, and |L(ei)| ≥ 1 for i = 1, 2.
(4)m = 5, and |L(e5)| ≥ 3, |L(ei)| ≥ 2 for i = 3, 4, and |L(ei)| ≥ 1 for i = 1, 2.
(5)m = 6, and |L(ei)| ≥ 3 for i = 5, 6, |L(ei)| ≥ 2 for i = 3, 4, and |L(ei)| ≥ 1 for i = 1, 2.

Lemma 2 ([1]). For any graph G, la2(G) ≤ ∆(G).

Theorem 3. If G is a planar graph with ∆(G) ≤ 10, then la2(G) ≤ 9.

Proof. It suffices to prove that G has a linear-9-coloring. If ∆(G) ≤ 9, then the result holds automatically by Lemma 2. So
assume that∆(G) = 10. The proof is proceeded by contradiction. LetG be a counterexample to the theorem such that |V (G)|+
|E(G)| is the least possible. So G is connected and δ(G) ≥ 1. For any proper subgraph H of G, H has a linear-9-coloring φ.

In the following, let C = {1, 2, . . . , 9} denote a set of nine colors. For a vertex v ∈ V (H), we use C(v) to denote the
set of colors used in edges incident to v in H . Moreover, let Λ(v) denote a sequence of colors in C(v) some of which may
appear twice. For example, Λ(v) = (1, 1, 2, 3, 4, 5) indicates that v is a 6-vertex whose incident edges are colored with
the colors 1, 2, . . . , 5, where 1 appears twice and the other appears only once. For an edge xy ∈ E(G) \ E(H), let L(xy) =

C \ (C(x) ∪ C(y)), whose colors can apply to xy.
Let H be a largest component of the graph which is obtained from G by removing all 1-vertices and 2-vertices. Embed H

into the plane. Then H is a connected plane graph with ∆(H) ≤ 10.
Claims 1–4 below can be proved similarly to the proof of Claims 1–4 in Theorem 7 in [8]. In fact, it is enough to replace

11 by 10 in some places.

Claim 1. There is no edge xy ∈ E(G) such that dG(x) + dG(y) ≤ 10.

Claim 2. Let v ∈ V (G) be a k-vertex with 5 ≤ k ≤ 10 and v1, v2, . . . , vk be the neighbors of v with dG(v1) ≤ dG(v2) ≤ · · · ≤

dG(vk). Then the following statements hold.
(0) n11−k(v) ≤ 1.
(1) If n11−k(v) = 1, then n12−k(v) ≤ 1; moreover, if n12−k(v) = 1, then n13−k(v) ≤ 1.
(2) n11−k(v) + n12−k(v) ≤ 3; moreover, if n11−k(v) + n12−k(v) = 3, then n13−k(v) = 0.
(3) If k = 10, then n1(v) + n2(v) + n3(v) ≤ 5; moreover, if n1(v) + n2(v) ≥ 3, then n3(v) = 0.

The following useful observation follows easily from Claims 1 and 2:

Observation 1. Let v ∈ V (H). Then following statements hold.
(1) If dH (v) = 7, then dG(v) = 7; or dG(v) = 10 with n2(v) = 3.
(2) If dH (v) = 8, then dG(v) = 8; or dG(v) = 9 with n2(v) = 1; or dG(v) = 10 with n1(v) + n2(v) = 2.
(3) If dH (v) = 9, then dG(v) = 9; or dG(v) = 10 with n1(v) + n2(v) = 1.

Claim 3. δ(H) ≥ 3.

Claim 4. If dH (v) ≤ 6, then dH (v) = dG(v).

For a vertex v ∈ V (H) and an integer i ≥ 3, let n′

i(v) denote the number of i-vertices adjacent to v in H , andm′

3(v) denote
the number of 3-faces incident to v in H . By Claim 4, n′

i(v) = ni(v) for i = 3, 4, 5.
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