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1. Introduction

Only simple and finite graphs are considered in this paper. For a graph G, we use V(G), E(G), §(G), and A(G) (for short, A)
to denote, respectively, its vertex set, edge set, minimum degree, and maximum degree. An edge-partition of a graph G is a
decomposition of G into subgraphs Gi, G, ..., Gy, such that E(G) = E(G1) UE(G,) U - - - U E(Gy) and E(G;) N E(Gj) = ¥ for
i # j. Alinear k-forest is a graph whose components are paths of length at most k. The linear k-arboricity of G, denoted by
lai(G), is the least integer m such that G can be edge-partitioned into m linear k-forests.

The linear k-arboricity of a graph was first introduced by Habib and Péroche [5]. They posed the following conjecture,
where n = |V(G)| and k > 2:

nA+1'| ifA#n-1;
a6 < | 2bET)
{ W ifA=n—1.
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The linear k-arboricity of graphs has been extensively investigated [1,3,4,6]. Lih, Tong and Wang [7] proved that every
planar graph G has 1a;(G) < [(A + 1)/2] + 12, and lay(G) < [(A + 1)/2] + 6 if G moreover contains no 3-cycles. Recently,
Wang [8] improved this result by showing that every planar graph G has la;(G) < [(A + 1)/2] + 6. Unfortunately, there is
a correctable error in the proof of the main result in [8], which has been found by the author herself, and independently by
Dr. Xin Liu (a private communication). Precisely, the following statement in page 41, line 22, in [8] is not necessarily true:

“Similarly, we can show that dg, (v;) < B(v;).”

In fact, when dg(v) = 15, dF (v;) = 0, and dF /(v;) = 2, we have B(v;) = max{2, [(d¢(v;) — 11)/2]} = 2 and
dr,(vi) = dF/(v )+ 1 = 3, which does not satisfy that sz(Ul) < B(vj).

In this paper we first show that every planar graph G with A = 10 has lay(G) < 9. Then, by using this result and adjusting
the proof of Theorem 2 in [8], we will correct this error and keep original result unchanged.
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2. Planar graphs with A = 10

Given a plane graph G, let F(G) denote its face set. For f € F(G), we use b(f) to denote the closed boundary walk of f and
write f = [uquy - - - u,] ifuq, us, .. ., u, are the vertices on the boundary walk in clockwise order, with repeated occurrences
of vertices allowed. A vertex of degree k (at most k, at least k) is called a k-vertex (k~-vertex, k*-vertex). Similarly, we can
define k-face, k™ -face, and k™ -face. For a vertex v € V(G) and an integer n > 1, let n;(v) denote the number of i-vertices
adjacent to v in G.

To investigate the linear 2-arboricity of a graph G, we consider the linear edge-coloring of G, i.e., a mapping ¢ from E(G)
to the color set C such that every color class induces a subgraph whose components are paths of length at most 2. We call
such coloring linear-k-coloring of G if C contains k colors. Clearly, a graph G has linear 2-arboricity at most k if and only if G
is linear-k-colorable.

A function L is called an assignment for the graph G if it assigns a list L(e) of possible colors to each edge e of G. If G has a
linear edge-coloring ¢ such that ¢(e) € L(e) for all edges e, then we say that ¢ is an L-linear edge-coloring of G, or say that G
is L-linear edge-colorable.

Let S;;, denote a star consisting of m edges ey, e, . . ., e, Wwhere m > 2. The following Lemma 1 was proved in [8].

Lemma 1(/8]). Let S, be a star and L be a list assignment for the edges in Sy, satisfying the following conditions, then S,, is L-linear
edge-colorable.

(1)m=2,and |L(e;)| = 1fori=1, 2.

(2)m = 3,and |L(e3)| = 2 and |L(e;)| = 1fori=1, 2.

(3)ym =4, and |L(e;)| > 2 fori = 3,4, and |L(e;)| > 1fori=1, 2.

(4)ym =5, and |L(es)| > 3, |L(e;)] = 2 fori=3,4,and |L(e;)| > 1fori=1,2.

(5)m =6, and |L(e;)| > 3fori=5,6,|L(e;)| > 2fori=3,4,and |L(e;)] > 1fori=1,2.

Lemma 2 ([1]). For any graph G, 1a5(G) < A(G).
Theorem 3. If G is a planar graph with A(G) < 10, then la;(G) < 9.

Proof. It suffices to prove that G has a linear-9-coloring. If A(G) < 9, then the result holds automatically by Lemma 2. So
assume that A(G) = 10.The proofis proceeded by contradiction. Let G be a counterexample to the theorem such that |V(G)|+
|E(G)| is the least possible. So G is connected and §(G) > 1. For any proper subgraph H of G, H has a linear-9-coloring ¢.

In the following, let C = {1, 2, ..., 9} denote a set of nine colors. For a vertex v € V(H), we use C(v) to denote the
set of colors used in edges incident to v in H. Moreover, let A(v) denote a sequence of colors in C(v) some of which may
appear twice. For example, A(v) = (1,1, 2, 3, 4, 5) indicates that v is a 6-vertex whose incident edges are colored with
the colors 1,2, ..., 5, where 1 appears twice and the other appears only once. For an edge xy € E(G) \ E(H), let L(xy) =
C \ (C(x) U C(y)), whose colors can apply to xy.

Let H be a largest component of the graph which is obtained from G by removing all 1-vertices and 2-vertices. Embed H
into the plane. Then H is a connected plane graph with A(H) < 10.

Claims 1-4 below can be proved similarly to the proof of Claims 1-4 in Theorem 7 in [8]. In fact, it is enough to replace
11 by 10 in some places.

Claim 1. There is no edge xy € E(G) such that dg(x) + dg(y) < 10.

Claim 2. Let v € V(G) be a k-vertex with 5 < k < 10 and vq, vy, ..., vy be the neighbors of v with dg(vq) < dg(1v2) < --- <
dg(vg). Then the following statements hold.

0)np(v) < 1

(M) If ny1_k(v) = 1, then nya_i(v) < 1; moreover, if nio_(v) = 1, thennyz_,(v) < 1.

(2) n11-(v) + nia—k(v) < 3; moreover, if ny1_,(v) + nip—k(v) = 3, then ny3_,(v) = 0.

(3)If k = 10, then ny(v) + ny(v) + n3(v) < 5; moreover, if ni(v) + ny(v) > 3, then n3(v) = 0.

The following useful observation follows easily from Claims 1 and 2:
Observation 1. Let v € V(H). Then following statements hold.
(1) If dy(v) = 7, then dg(v) = 7; or dg(v) = 10 with ny(v) = 3.

(2)If dy(v) = 8, then dg(v) = 8; or dg(v) = 9 with ny(v) = 1; or dg(v) = 10 with ny(v) + ny(v) = 2.
(3)If dy(v) =9, then dg(v) = 9; or dg(v) = 10 with ny(v) + ny(v) = 1.

Claim 3. §(H) > 3.

Claim 4. If dy(v) < 6, then dy(v) = dc(v).

For a vertex v € V(H) and an integer i > 3, let nj(v) denote the number of i-vertices adjacent to v in H, and m}(v) denote
the number of 3-faces incident to v in H. By Claim 4, nj(v) = n;(v) fori = 3, 4, 5.
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