ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A note on the linear 2-arboricity of planar graphs

Yiqiao Wang ^{a,*}, Xiaoxue Hu ^b, Weifan Wang ^b

- ^a School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
- ^b Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

ARTICLE INFO

Article history: Received 4 November 2015 Accepted 30 January 2017

Keywords: Planar graph Linear 2-arboricity Maximum degree Edge-partition

ABSTRACT

The linear 2-arboricity $la_2(G)$ of a graph G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose components are paths of length at most 2. In this paper, we prove that every planar graph G with $\Delta=10$ has $la_2(G) \leq 9$. Using this result, we correct an error in the proof of a result in Wang (2016), which says that every planar graph G satisfies $la_2(G) \leq \lceil (\Delta+1)/2 \rceil + 6$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Only simple and finite graphs are considered in this paper. For a graph G, we use V(G), E(G), $\delta(G)$, and $\Delta(G)$ (for short, Δ) to denote, respectively, its vertex set, edge set, minimum degree, and maximum degree. An *edge-partition* of a graph G is a decomposition of G into subgraphs G_1, G_2, \ldots, G_m such that $E(G) = E(G_1) \cup E(G_2) \cup \cdots \cup E(G_m)$ and $E(G_i) \cap E(G_j) = \emptyset$ for $i \neq j$. A *linear k-forest* is a graph whose components are paths of length at most K. The *linear k-arboricity* of G, denoted by $I_{G_i}(G)$, is the least integer K0 such that K1 can be edge-partitioned into K2.

The linear k-arboricity of a graph was first introduced by Habib and Péroche [5]. They posed the following conjecture, where n = |V(G)| and $k \ge 2$:

$$\operatorname{la}_{k}(G) \leq \begin{cases} \left\lceil \frac{n\Delta+1}{2\lfloor \frac{kn}{k+1} \rfloor} \right\rceil & \text{if } \Delta \neq n-1; \\ \left\lceil \frac{n\Delta}{2\lfloor \frac{kn}{k+1} \rfloor} \right\rceil & \text{if } \Delta = n-1. \end{cases}$$

The linear k-arboricity of graphs has been extensively investigated [1,3,4,6]. Lih, Tong and Wang [7] proved that every planar graph G has $la_2(G) \le \lceil (\Delta+1)/2 \rceil + 12$, and $la_2(G) \le \lceil (\Delta+1)/2 \rceil + 6$ if G moreover contains no 3-cycles. Recently, Wang [8] improved this result by showing that every planar graph G has $la_2(G) \le \lceil (\Delta+1)/2 \rceil + 6$. Unfortunately, there is a correctable error in the proof of the main result in [8], which has been found by the author herself, and independently by Dr. Xin Liu (a private communication). Precisely, the following statement in page 41, line 22, in [8] is not necessarily true:

"Similarly, we can show that $d_{F_2}(v_i) \leq \beta(v_i)$."

In fact, when $d_G(v) = 15$, $d_{F_1'}(v_i) = 0$, and $d_{F_2'}(v_i) = 2$, we have $\beta(v_i) = \max\{2, \lceil (d_G(v_i) - 11)/2 \rceil\} = 2$ and $d_{F_2}(v_i) = d_{F_2'}(v_i) + 1 = 3$, which does not satisfy that $d_{F_2}(v_i) \leq \beta(v_i)$.

In this paper, we first show that every planar graph G with $\Delta = 10$ has $la_2(G) \le 9$. Then, by using this result and adjusting the proof of Theorem 2 in [8], we will correct this error and keep original result unchanged.

E-mail address: yqwang@bucm.edu.cn (Y. Wang).

^{*} Corresponding author.

2. Planar graphs with $\Delta = 10$

Given a plane graph G, let F(G) denote its face set. For $f \in F(G)$, we use b(f) to denote the closed boundary walk of f and write $f = [u_1u_2 \cdots u_n]$ if u_1, u_2, \ldots, u_n are the vertices on the boundary walk in clockwise order, with repeated occurrences of vertices allowed. A vertex of degree k (at most k, at least k) is called a k-vertex (k-vertex, k+-vertex). Similarly, we can define k-face, k-face, and k+-face. For a vertex $v \in V(G)$ and an integer $n \geq 1$, let $n_i(v)$ denote the number of i-vertices adjacent to v in G.

To investigate the linear 2-arboricity of a graph G, we consider the linear edge-coloring of G, i.e., a mapping ϕ from E(G) to the color set G such that every color class induces a subgraph whose components are paths of length at most G. We call such coloring linear-G-coloring of G if G contains G contains G colors. Clearly, a graph G has linear 2-arboricity at most G is linear-G-colorable.

A function L is called an assignment for the graph G if it assigns a list L(e) of possible colors to each edge e of G. If G has a linear edge-coloring ϕ such that $\phi(e) \in L(e)$ for all edges e, then we say that ϕ is an L-linear edge-coloring of G, or say that G is L-linear edge-colorable.

Let S_m denote a star consisting of m edges e_1, e_2, \ldots, e_m , where $m \ge 2$. The following Lemma 1 was proved in [8].

Lemma 1 ([8]). Let S_m be a star and L be a list assignment for the edges in S_m satisfying the following conditions, then S_m is L-linear edge-colorable.

```
(1) m = 2, and |L(e_i)| \ge 1 for i = 1, 2.
```

- (2) m = 3, and $|L(e_3)| \ge 2$ and $|L(e_i)| \ge 1$ for i = 1, 2.
- (3) m = 4, and $|L(e_i)| \ge 2$ for i = 3, 4, and $|L(e_i)| \ge 1$ for i = 1, 2.
- (4) m = 5, and $|L(e_5)| \ge 3$, $|L(e_i)| \ge 2$ for i = 3, 4, and $|L(e_i)| \ge 1$ for i = 1, 2.
- (5) m = 6, and $|L(e_i)| > 3$ for i = 5, 6, $|L(e_i)| > 2$ for i = 3, 4, and $|L(e_i)| > 1$ for i = 1, 2.

Lemma 2 ([1]). For any graph G, $la_2(G) \leq \Delta(G)$.

Theorem 3. If G is a planar graph with $\Delta(G) \leq 10$, then $la_2(G) \leq 9$.

Proof. It suffices to prove that *G* has a linear-9-coloring. If $\Delta(G) \leq 9$, then the result holds automatically by Lemma 2. So assume that $\Delta(G) = 10$. The proof is proceeded by contradiction. Let *G* be a counterexample to the theorem such that |V(G)| + |E(G)| is the least possible. So *G* is connected and $\delta(G) > 1$. For any proper subgraph *H* of *G*, *H* has a linear-9-coloring ϕ .

In the following, let $C = \{1, 2, ..., 9\}$ denote a set of nine colors. For a vertex $v \in V(H)$, we use C(v) to denote the set of colors used in edges incident to v in H. Moreover, let $\Lambda(v)$ denote a sequence of colors in C(v) some of which may appear twice. For example, $\Lambda(v) = (1, 1, 2, 3, 4, 5)$ indicates that v is a 6-vertex whose incident edges are colored with the colors 1, 2, ..., 5, where 1 appears twice and the other appears only once. For an edge $xy \in E(G) \setminus E(H)$, let $L(xy) = C \setminus (C(x) \cup C(y))$, whose colors can apply to xy.

Let H be a largest component of the graph which is obtained from G by removing all 1-vertices and 2-vertices. Embed H into the plane. Then H is a connected plane graph with $\Delta(H) < 10$.

Claims 1–4 below can be proved similarly to the proof of Claims 1–4 in Theorem 7 in [8]. In fact, it is enough to replace 11 by 10 in some places.

Claim 1. There is no edge $xy \in E(G)$ such that $d_G(x) + d_G(y) < 10$.

Claim 2. Let $v \in V(G)$ be a k-vertex with $5 \le k \le 10$ and v_1, v_2, \ldots, v_k be the neighbors of v with $d_G(v_1) \le d_G(v_2) \le \cdots \le d_G(v_k)$. Then the following statements hold.

```
(0) n_{11-k}(v) \le 1.
```

- (1) If $n_{11-k}(v) = 1$, then $n_{12-k}(v) \le 1$; moreover, if $n_{12-k}(v) = 1$, then $n_{13-k}(v) \le 1$.
- (2) $n_{11-k}(v) + n_{12-k}(v) \le 3$; moreover, if $n_{11-k}(v) + n_{12-k}(v) = 3$, then $n_{13-k}(v) = 0$.
- (3) If k = 10, then $n_1(v) + n_2(v) + n_3(v) \le 5$; moreover, if $n_1(v) + n_2(v) \ge 3$, then $n_3(v) = 0$.

The following useful observation follows easily from Claims 1 and 2:

Observation 1. Let $v \in V(H)$. Then following statements hold.

```
(1) If d_H(v) = 7, then d_G(v) = 7; or d_G(v) = 10 with n_2(v) = 3.
```

- (2) If $d_H(v) = 8$, then $d_G(v) = 8$; or $d_G(v) = 9$ with $n_2(v) = 1$; or $d_G(v) = 10$ with $n_1(v) + n_2(v) = 2$.
- (3) If $d_H(v) = 9$, then $d_G(v) = 9$; or $d_G(v) = 10$ with $n_1(v) + n_2(v) = 1$.

Claim 3. $\delta(H) \geq 3$.

```
Claim 4. If d_H(v) < 6, then d_H(v) = d_G(v).
```

For a vertex $v \in V(H)$ and an integer $i \ge 3$, let $n_i'(v)$ denote the number of i-vertices adjacent to v in H, and $m_3'(v)$ denote the number of 3-faces incident to v in H. By Claim 4, $n_i'(v) = n_i(v)$ for i = 3, 4, 5.

Download English Version:

https://daneshyari.com/en/article/5776897

Download Persian Version:

https://daneshyari.com/article/5776897

<u>Daneshyari.com</u>