ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

An approximate ore-type result for tight Hamilton cycles in uniform hypergraphs

Yucong Tang, Guiying Yan*

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, PR China School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China

ARTICLE INFO

Article history: Received 18 November 2015 Received in revised form 11 February 2017 Accepted 18 February 2017

Keywords: Cycle Hamiltonian Hypergraph Ore-type

ABSTRACT

A Hamilton ℓ -cycle in a k-uniform hypergraph of n-vertex is an ordering of all vertices, combined with an ordered subset C of edges, such that any two consecutive edges share exactly ℓ vertices and each edge in C contains k consecutive vertices.

A classic result of O. Ore in 1960 is that if the degree sum of any two independent vertices in an n-vertex graph is at least n, then the graph contains a Hamiltonian cycle. Naturally, we consider to generalize it to hypergraphs situation. In this paper, we prove the following theorems. (i) For any $n \geq 4k^2$, there is an n-vertex k-uniform hypergraph, with degree sum of any two strongly independent sets of k-1 vertices bigger than 2n-4(k-1), contains no Hamilton l-cycle, $1 \leq \ell \leq k-1$. (ii) If the degree sum of two weakly independent sets of k-1 vertices in an n-vertex k-uniform hypergraph is (1+o(1))n, then the hypergraph contains a Hamilton (k-1)-cycle, where two distinct sets of k-1 vertices are weakly (strongly) independent if there exist no edge containing the union of them (intersecting both of them).

© 2017 Published by Elsevier B.V.

1. Introduction

A k-uniform hypergraph is pair H = (V, E) of a vertex set V and an edge set E, where each edge contains precisely k vertices. A Hamilton ℓ -cycle C in H is an ordered subset $\{e_1, e_2, \ldots, e_{|C|}\}$ of E such that for some cyclic ordering of V, every edge in C consists of k consecutive vertices of the ordering and for every pair of consecutive edges e_i, e_{i+1} in C, we have that $|e_i \cap e_{i+1}| = \ell$. Furthermore, let $\binom{V}{k-1}$ denote the family of all k-1 vertices set in V, and for any $S \in \binom{V}{k-1}$, denote $\deg(S) = |\{e \in E : S \subset e\}|$ the degree of S.

Two of the classic theorems in Hamiltonian graphs are proved by G.A. Dirac and O. Ore. In 1952, Dirac [1] proved that any n-vertex graphs with minimum degree at least $\frac{n}{2}$, $n \ge 3$, is Hamiltonian. Later in 1960, Ore [7] showed that a graph G with $\sigma_2(G) \ge n$ is Hamiltonian, here $\sigma_2(G) = \min\{d(u) + d(v) : u, v \text{ are independent}\}$.

It is natural to generalize these two classic theorems to k-uniform hypergraphs. In 1999, a natural extension of Dirac's theorem has been conjectured by Katona and Kierstead [5] and approximately solved in the case $k \ge 3$ by V. Rödl, A. Ruciński and E. Szemerédi [8] as follows.

Theorem 1.1 (Rödl, Ruciński and Szemerédi [8]). Let H be a k-uniform hypergraph, and let $\delta_{k-1}(H)$ be the minimum of $\deg(S)$ over all $S \in \binom{V}{k-1}$. For every $k \geq 3$ and $\gamma > 0$ there exists an n_0 such that every k-uniform n-vertex hypergraph with $\delta_{k-1}(H) \geq (\frac{1}{2} + \gamma)n$, $n \geq n_0$, contains a Hamilton (k-1)-cycle.

^{*} Corresponding author at: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, PR China. E-mail addresses: tangyucong@amss.ac.cn (Y. Tang), yangy@amss.ac.cn (G. Yan).

They later strengthen their result for 3-uniform hypergraph, which solved the conjecture for the case k = 3 [9].

In [8], they proposed a very powerful method, named absorbing, for Hamilton cycle in hypergraphs. Roughly speaking, they divided constructing a Hamilton cycle into four steps. First, one may construct a short path P that can absorb any vertex set with small size. Second, find a reservoir set R. Then, prove there exists a collection P of vertex-disjoint paths covering almost all the remained vertex. At last, connect all the paths in P and P by only using the vertex in R, and absorb the uncovered vertices into P.

Based on their approach, H. Hàn and M. Schacht [3] later proved an approximately best possible result that for any $1 \le \ell < \frac{k}{2}$, every n-vertex k-uniform hypergraph H with $\delta_{k-1}(H) = (\frac{1}{2(k-\ell)} + o(1))n$ contains a Hamilton ℓ -cycle. The best result for $1 \le \ell \le k$, proved by J. Han and Y. Zhao [2], is that any n-vertex k-uniform hypergraph H such that n is sufficiently large and $\delta_{k-1}(H) \ge \lceil \frac{n}{2k-2\ell} \rceil$ contains a Hamilton ℓ -cycle. For more general case when $1 \le \ell < k$, Kühn, Mycroft and Osthus [6] proved that when $(k-\ell) \nmid k$, any n-vertex k-uniform hypergraph with $\delta_{k-1}(H) = (\frac{1}{\lceil \frac{k}{k-1} \rceil (k-\ell)} + o(1))n$ contains a Hamilton ℓ -cycle.

In order to study the Ore-type condition for Hamiltonian cycle, we consider two types of independent sets between a pair of (k-1)-vertex sets stated in the following definition, which are generalizations of independence in graphs.

Definition 1.1. Given $S_1, S_2 \in \binom{V}{k}$, we say S_1, S_2 are strongly independent if there exists no such edge e, that $e \cap S_1 \neq \emptyset$ and $e \cap S_2 \neq \emptyset$; S_1, S_2 are weakly independent if there exists no such edge e that $S_1 \cup S_2 \subset e$.

Note that two strongly independent sets are also weakly independent. For a k-uniform hypergraph H, define $\sigma_{2'}^{k-1}(H) = \min\{\deg(S) + \deg(T) : S, T \in \binom{V}{k-1} \text{ and } S, T \text{ are strongly independent}\}$, $\sigma_2^{k-1}(H) = \min\{\deg(S) + \deg(T) : S, T \in \binom{V}{k-1} \text{ and } S, T \text{ are weakly independent}\}$. We show that only bound $\sigma_{2'}^{k-1}(H)$ is not sufficient to ensure H to be Hamiltonian.

Theorem 1.2. For any $n \ge 4k^2$, $k \ge 3$, there exist an n-vertex k-uniform hypergraph J_n with $\sigma_{2'}^{k-1}(J_n) \ge 2n - 4(k-1)$ that contains no Hamilton ℓ -cycle, where $1 \le \ell \le k-1$.

When $\sigma_2^{k-1}(H) \geq (1+o(1))n$, note that if there is a (k-1)-tuple Q with degree less than $(\frac{1}{2}+o(1))n$, then every (k-1)-tuple in $V(H)\setminus Q$ has high degree, and thus by the result of [8], there is a tight cycle covering $V(H)\setminus Q$. In fact, it could be a tight cycle missing only two vertices from Q. We show that $\sigma_2^{k-1}(H) = (1+o(1))n$ is enough for H to contain a Hamilton (k-1)-cycle.

Theorem 1.3. For every $k \ge 3$, $\gamma > 0$, there exist n_0 such that every $n \ge n_0$ vertices k-uniform hypergraph H, $n \ge n_0$, with $\sigma_2^{k-1}(H) \ge (1+\gamma)n$, contains a Hamilton (k-1)-cycle.

This bound is approximately best possible since it was shown in [5] that there exists a k-uniform hypergraph H on n vertices with $\delta_{k-1}(H) \geq \lceil \frac{n}{2} \rceil - 1$, which contains no Hamilton (k-1)-cycle.

2. Proof of Theorem 1.2

We construct the required hypergraph as follows. Let J = (V, E) be a k-uniform hypergraph on n vertices, where $V = A \cup B \cup C$, |A| = |C| = k - 1, |B| = n - 2(k - 1), and every edge e spans between A and B or between C and B, i.e.,

```
(i) e \cap B \neq \emptyset, e \cap A \neq \emptyset and e \cap C = \emptyset, or (ii) e \cap B \neq \emptyset, e \cap C \neq \emptyset and e \cap A = \emptyset.
```

Proof of Theorem 1.2. First, it is easy to check that A, C are strongly independent in J. We next show that every pair $S_1, S_2 \in \binom{V}{k-1}, S_1 \neq S_2$, are not strongly independent in J except for $S_1 = A$ and $S_2 = C$. Thus, $\sigma_{2'}^{k-1}(J) = \deg(A) + \deg(C) = 2(n-2(k-1)) = 2n-4(k-1)$.

Let $S_1 \neq A$ and $S_1 \neq C$.

Case 1 $S_1 \cap B \neq \emptyset$.

Then let $e = \{u\} \cup \{v\} \cup \{R\}$, where $u \in S_1 \cap B$, $v \in S_2 \setminus S_1$ and $R \subset A \setminus \{u\}$, |R| = k - 2. It is clear that S_1 and S_2 is not strongly independent under this e.

Case 2 $S_1 \cap B = \emptyset$.

We have that $S_1 \cap A \neq \emptyset$ and $S_1 \cap C \neq \emptyset$. Note that by the discussion in Case 1, if $S_2 \cap B \neq \emptyset$, we also have that S_1 and S_2 are not strongly independent. However if $S_2 \cap B = \emptyset$, then $S = S_2 \cap A \neq \emptyset$ or $T = S_2 \cap C \neq \emptyset$. Hence, let $e_1 = A \cup \{u\}$ and $e_2 = C \cup \{u\}$, where $u \in B$, then we conclude $(e_1 \cap S_1) \cup (e_1 \cap S_2) \neq \emptyset$ or $(e_2 \cap S_1) \cup (e_2 \cap S_2) \neq \emptyset$. Thus S_1 and S_2 are not strongly independent.

We now prove that J contains no Hamilton l-cycle, $1 \le \ell \le k - 1$. Otherwise V can be ordered cyclically and there is a collection of edges C such that the edges e_i in C corresponds to some consecutive k vertices and $|e_i \cap e_{i+1}| = \ell$.

We claim that every consecutive 2k-2 vertices $L=\{v_1,v_2,\ldots,v_{2k-2}\}$ in this order must contain an edge in C. Suppose that e_{i_0} is the last edge that meet v_1 , i.e., $v_1 \notin e_{i_0+1}$ and $v_1 \in e_{i_0}$, and let v_s be the last vertex in e_{i_0} . It is easy to see that $s \leq k$, and by definition of Hamilton ℓ -cycle, $|e_{i_0+1} \cap e_{i_0}| = \ell$. Thus $e_{i_0+1} = \{v_{s-\ell+1}, v_{s-\ell+2}, \ldots, v_{s-\ell+k}\} \subset L$.

Finally, we show that there exist some consecutive 2k-2 vertices L' that avoid A and C, thus there is an edge in L' consists of vertices in B, which contradicts the construction of E. We partition $\{v_1, v_2, \ldots, v_n\}$ into segments of length 2k-2, i.e., we set $L_i = \{v_{(2k-2)i+1}, v_{(2k-2)i+2}, \ldots, v_{(2k-2)(i+1)}\}$, $i = 0, 1, \ldots$ Since $|A \cup C| = 2k-2$ and $n \geq 4k^2$, so we have at least 2k segments and at most 2k-2 segments intersecting $A \cup C$. Hence there is a L' avoiding $A \cup C$. \square

Download English Version:

https://daneshyari.com/en/article/5776907

Download Persian Version:

https://daneshyari.com/article/5776907

Daneshyari.com