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Article history: A Hamilton ¢-cycle in a k-uniform hypergraph of n-vertex is an ordering of all vertices,
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Accepted 18 February 2017 A classic result of O. Ore in 1960 is that if the degree sum of any two independent

vertices in an n-vertex graph is at least n, then the graph contains a Hamiltonian cycle.
Naturally, we consider to generalize it to hypergraphs situation. In this paper, we prove the

Ié;ﬁ/gords' following theorems. (i) For any n > 4k2, there is an n-vertex k-uniform hypergraph, with
Hamiltonian degree sum of any two strongly independent sets of k— 1 vertices bigger than 2n —4(k— 1),
Hypergraph contains no Hamilton I-cycle, 1 < ¢ < k — 1. (ii) If the degree sum of two weakly
Ore-type independent sets of k — 1 vertices in an n-vertex k-uniform hypergraph is (1 + o(1))n,

then the hypergraph contains a Hamilton (k — 1)-cycle, where two distinct sets of k — 1
vertices are weakly (strongly) independent if there exist no edge containing the union of
them (intersecting both of them).

© 2017 Published by Elsevier B.V.

1. Introduction

A k-uniform hypergraph is pair H = (V, E) of a vertex set V and an edge set E, where each edge contains precisely k
vertices. A Hamilton ¢-cycle C in H is an ordered subset {e1, e,, ..., e,c|} of E such that for some cyclic ordering of V, every
edge in C consists of k consecutive vertices of the ordering and for every pair of consecutive edges e;, e;+; in C, we have
that |e; N ejy1| = ¢. Furthermore, let (,” ) denote the family of all k — 1 vertices set in V, and for any S € (,”,), denote
deg(S) = |{e € E : S C e}| the degree of S.

Two of the classic theorems in Hamiltonian graphs are proved by G.A. Dirac and O. Ore. In 1952, Dirac [ 1] proved that any
n-vertex graphs with minimum degree at least % n > 3, is Hamiltonian. Later in 1960, Ore [7] showed that a graph G with
0,(G) > n is Hamiltonian, here 0,(G) = min{d(u) + d(v) : u, v are independent}.

It is natural to generalize these two classic theorems to k-uniform hypergraphs. In 1999, a natural extension of Dirac’s
theorem has been conjectured by Katona and Kierstead [5] and approximately solved in the case k > 3 by V. Rdl, A. Ruciriski
and E. Szemerédi [8] as follows.

Theorem 1.1 (R6dl, Ruciriski and Szemerédi [8]). Let H be a k-uniform hypergraph, and let 8;_,(H) be the minimum of deg(S)
overall S € ( kzl). For every k > 3 and y > O there exists an ng such that every k-uniform n-vertex hypergraph with
Sk—1(H) > (% + y)n, n > ny, contains a Hamilton (k — 1)-cycle.
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They later strengthen their result for 3-uniform hypergraph, which solved the conjecture for the case k = 3 [9].

In [8], they proposed a very powerful method, named absorbing, for Hamilton cycle in hypergraphs. Roughly speaking,
they divided constructing a Hamilton cycle into four steps. First, one may construct a short path P that can absorb any vertex
set with small size. Second, find a reservoir set R. Then, prove there exists a collection P of vertex-disjoint paths covering
almost all the remained vertex. At last, connect all the paths in 7 and P by only using the vertex in R, and absorb the uncovered
vertices into P.

Based on their approach, H. Han and M. Schacht [3] later proved an approximately best possible result that for any
1<¢ < % every n-vertex k-uniform hypergraph H with §;_{(H) = (ﬁ + o(1))n contains a Hamilton ¢-cycle. The
best result for 1 < ¢ < k, proved by J. Han and Y. Zhao [2], is that any n-vertex k-uniform hypergraph H such that n is
sufficiently large and §,_1(H) > fﬁ} contains a Hamilton £-cycle. For more general case when 1 < ¢ < k, Kiihn, Mycroft

and Osthus [6] proved that when (k — £) 1 k, any n-vertex k-uniform hypergraph with §;_;(H) = (m 4+ 0(1))n contains
a Hamilton £-cycle. -

In order to study the Ore-type condition for Hamiltonian cycle, we consider two types of independent sets between a pair
of (k — 1)-vertex sets stated in the following definition, which are generalizations of independence in graphs.
Definition 1.1. Given 54, S; € (‘f) we say S1, S, are strongly independent if there exists no such edge e, thate N S; # @ and
e NS, # @; S1, S, are weakly in&ependent if there exists no such edge e that S; US; C e.

Note that two strongly independent sets are also weakly independent. For a k-uniform hypergraph H, define a",’l(H )=

min{deg(S) + deg(T) : S,T € (kL) and S, T are strongly independent}, 02"‘1(H) = min{deg(S) + deg(T) : S, T €

(kzl ) and S, T are weakly independent}. We show that only bound 02",’1(H) is not sufficient to ensure H to be Hamiltonian.

Theorem 1.2. For any n > 4k? k > 3, there exist an n-vertex k-uniform hypergraph J, with 02"/_](],1) > 2n — 4(k — 1) that
contains no Hamilton £-cycle, where 1 < £ < k — 1.

When 02’"1 (H) > (1+0(1))n, note that if there is a (k—1)-tuple Q with degree less than ( % +0(1))n, then every (k—1)-tuple
in V(H)\ Q has high degree, and thus by the result of [8], there is a tight cycle covering V(H)\ Q. In fact, it could be a tight cycle
missing only two vertices from Q. We show that 02’ ~1(H) = (14 o(1))n is enough for H to contain a Hamilton (k — 1)-cycle.

Theorem 1.3. Forevery k > 3,y > 0, there exist ny such that every n > ng vertices k-uniform hypergraph H, n > ng, with
02"_1(H) > (14 y)n, contains a Hamilton (k — 1)-cycle.

This bound is approximately best possible since it was shown in [5] that there exists a k-uniform hypergraph H on n
vertices with 8;_1(H) > (%1 — 1, which contains no Hamilton (k — 1)-cycle.

2. Proof of Theorem 1.2

We construct the required hypergraph as follows. Let ] = (V, E) be a k-uniform hypergraph on n vertices, where
V=AUBUC, Al = |C|] = k—-1,|B] = n—2(k— 1), and every edge e spans between A and B or between C and B,
ie,

(leNnB#P,eNA#PandenC =0,

or(ii)eNB#@,eNC #@PandeNA=40.

Proof of Theorem 1.2. First, it is easy to check that A, C are strongly independent in J. We next show that every pair
51,5 € (kfl), S1 # S, are not strongly independent in J except for S; = Aand S, = C. Thus, crf,‘1 ) = deg(A) + deg(C) =
2(n—2(k—1))=2n—4(k—1).

LetS; #Aand S; # C.

Case 1S, NB # (.

Then lete = {u} U {v} U {R}, whereu € S;NB,v € S\ S;andR C A\ {u}, |R| = k — 2.1t is clear that S; and S; is not
strongly independent under this e.

Case2S,NB=4.

We have that S; N A # ¢ and S; N C # @. Note that by the discussion in Case 1, if S, N B # @, we also have that S; and S,
are not strongly independent. However if S; "B = ¢, thenS =S, NA # Por T =S, NC # (). Hence, lete; = AU {u} and
e, = C U {u}, where u € B, then we conclude (e; N S;)U (e NS;) # Bor(e; NS1)U(ea NSy) # . Thus S; and S, are not
strongly independent.

We now prove that J contains no Hamilton [-cycle, 1 < £ < k — 1. Otherwise V can be ordered cyclically and there is a
collection of edges C such that the edges e; in C corresponds to some consecutive k vertices and |e; N ej 1| = £.

We claim that every consecutive 2k — 2 vertices L = {vq, vy, ..., var_2} in this order must contain an edge in C. Suppose
that e;, is the last edge that meet vy, i.e., v1 & €j,4+1 and v; € e;y, and let v, be the last vertex in e;,. It is easy to see thats < k,
and by definition of Hamilton £-cycle, |ejy+1 N e;,| = €. Thus ejy41 = {Vs—e41, Vs—¢42, - - ., Vs—g4k} C L.

Finally, we show that there exist some consecutive 2k — 2 vertices L’ that avoid A and C, thus there is an edge in L’ consists
of vertices in B, which contradicts the construction of E. We partition {vq, vy, .. ., v,} into segments of length 2k — 2, i.e., we
set Li = {vok—2)i+1, Vk—2)i42> - - - » V2k—2)i+1))}, i = 0,1,....Since JAUC| = 2k —2and n > 4k?, so we have at least 2k
segments and at most 2k — 2 segments intersecting A U C. Hence there is a L’ avoidingAU C. O
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