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a b s t r a c t

We prove that if M is a maximal k-edge-colorable subgraph of a multigraph G and if
F = {v ∈ V (G) : dM (v) ≤ k − µ(v)}, then dF (v) ≤ dM (v) for all v ∈ V (G) with dM (v) < k.
(WhenG is a simple graph, the set F is just the set of vertices having degree less than k inM .)
This implies Vizing’s Theorem as well as a special case of Tuza’s Conjecture on packing and
covering of triangles. A more detailed version of our result also implies Vizing’s Adjacency
Lemma for simple graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A proper k-edge-coloring of a multigraph G without loops is a function ψ : E(G) → [k] such that ψ(e) ̸= ψ(f ) whenever
e and f are distinct edges sharing an endpoint (or both endpoints), where [k] = {1, . . . , k}. A graph is k-edge-colorable if it
admits a proper k-edge-coloring. We will tacitly assume in the rest of this paper that all multigraphs under consideration
are loopless.

A fundamental theorem concerning edge-coloring is Vizing’s Theorem [30]. Given a multigraph G, we write µG(v,w)
for the number of edges joining two vertices v and w, and we write µG(v) for maxw∈V (G)µG(v,w). When the graph G
is understood, we omit the subscripts. We also write ∆(G) for the maximum degree of G and µ(G) for maxv∈V (G)µ(v).
Vizing’s Theorem can then be stated as follows:

Theorem 1.1 (Vizing [30]). If G is a multigraph and k ≥ ∆(G) + µ(G), then G is k-edge-colorable.

Following the notation of [27], let ∆µ(G) = maxv∈V (G)[d(v) + µ(v)]. Since ∆µ(G) ≤ ∆(G) + µ(G) for any multigraph G,
and since this inequality is sometimes strict, the following theorem of Ore [22] strengthens Theorem 1.1.

Theorem 1.2 (Ore [22]). If G is a multigraph and k ≥ ∆µ(G), then G is k-edge-colorable.

In this paper, we prove the following generalization of Theorem 1.2. Here, when F ⊂ V (G), we write dF (v) for∑
w∈Fµ(v,w), and whenM ⊂ E(G), we write dM (v) for the total number ofM-edges incident to v.

Theorem 1.3. Let G be a multigraph, let k ≥ 1, and let M be a maximal k-edge-colorable subgraph of G. If F = {v ∈ V (G) :

dM (v) ≤ k − µ(v)}, then for every v ∈ V (G) with dM (v) < k, we have dF (v) ≤ dM (v).
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Fig. 1. Illustration of F (v) and U(v) for a vertex v, in the case k = 4. Thick edges denote edges in M; vertices have no incident edges aside from those
pictured.

Theorem 1.3 is easiest to understand in the case of simple graphs, whereµ(v) = 1 for all v. In this case, F is just the set of
all vertices with fewer than k colors present on the incident edges, that is, the set of all vertices missing at least one color.2

It is also instructive to consider Theorem 1.3 in the cases k = 1 and k = 2. Since a maximal matching in a graph G is just
a maximal 1-edge-colorable subgraph of G, the k = 1 case of Theorem 1.3 just states the observation that the set of vertices
left uncovered by a maximal matching is independent.

In the case k = 2, we can observe that in a maximal 2-edge-colorable subgraphM ⊂ G, every component ofM is an even
cycle or a path (possibly a 1-vertex path), and the vertices of F are the endpoints of the path components. Theorem 1.3 then
states that G[F ] induces a graph consisting of a matching together with possibly some isolates, where all vertices isolated
in M are also isolated in G[F ]. This conclusion is not difficult to prove directly, as the maximality of M implies that the only
G-edges among the vertices of F are edges that join the endpoints of the same path, if this would yield an odd cycle.

For k > 2, no simple characterization of k-edge colorable graphs is known, so a direct appeal to the structure ofM is not
possible. However, Theorem 1.3 still yields the following corollary.

Corollary 1.4. If G is a simple graph, M is a maximal k-edge-colorable subgraph of G, and F is the set of vertices with fewer than
k incident M-edges, then∆(G[F ]) ≤ k − 1.

To see that Theorem 1.3 implies Theorem 1.2, observe that if k ≥ ∆µ(G) and M is a maximal k-edge-colorable subgraph
of G, then F = V (G), so Theorem 1.3 states that dM (v) ≥ dG(v) for every vertex v. AsM is a subgraph of G, this impliesM = G,
so that G is k-edge-colorable. In Section 3, we show that Theorem 1.3 also implies a multigraph version of a strengthening
of Vizing’s Theorem due to Lovász and Plummer [20] and to Berge and Fournier [5].

In order to prove Theorem 1.3, we actually prove a more technical version of the theorem, with a somewhat stronger
conclusion. This version of Theorem 1.3 is similar to Vizing’s Adjacency Lemma, and we explore the connection in more
detail in Section 5.

Definition 1.5. Given a multigraph G, a subgraphM ⊂ G, and an integer k ≥ 1, for each v ∈ V (G) we define vertex sets F (v)
and U(v) by

F (v) = {w ∈ N(v) : dM (w) ≤ k − µG(v,w)},
U(v) = {w ∈ F (v) : µM (v,w) < µG(v,w)}.

We also write dF (v) for dF (v)(v), that is, dF (v) is the total number of edges from v to the vertices in F (v). The superscript here
is meant to emphasize that the F in this notation is a set depending on v, rather than being a fixed set as in Theorem 1.3.
Fig. 1 illustrates the definition of F (v) and U(v).

Theorem 1.6. Let G be a multigraph, let k ≥ 1, and let M be a maximal k-edge-colorable subgraph of G. For every v ∈ V (G)with
dM (v) < k, we have

dF (v) ≤ dM (v) −

∑
w∈U(v)

(k − dM (w) − µG(v,w)).

Note that since U(v) ⊂ F (v) by definition, we have dM (w) ≤ k − µG(v,w) for all w ∈ U(v), so that each term
k − dM (w) − µG(v,w) in the above sum is nonnegative. Furthermore, when F0 is the set defined in Theorem 1.3, we see
that (N(v) ∩ F0) ⊂ F (v) for all v ∈ V (G). Thus, Theorem 1.6 indeed strengthens Theorem 1.3.

We now consider a conjecture of Tuza regarding packing and covering of triangles.

Definition 1.7. Given a graph G, let τ (G) denote the minimum size of an edge set X such that G − X is triangle-free, and let
ν(G) denote the maximum size of a set of pairwise edge-disjoint triangles in G.

2 The letter F is meant to evoke the word ‘‘deficient’’, the letter D being unavailable since it is used in a different context in this paper.



Download	English	Version:

https://daneshyari.com/en/article/5776911

Download	Persian	Version:

https://daneshyari.com/article/5776911

Daneshyari.com

https://daneshyari.com/en/article/5776911
https://daneshyari.com/article/5776911
https://daneshyari.com/

