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a b s t r a c t

A set C ⊂ V (G) is an identifying code in a graph G if for all v ∈ V (G), C[v] ̸= ∅, and
for all distinct u, v ∈ V (G), C[u] ̸= C[v], where C[v] = N[v] ∩ C and N[v] denotes
the closed neighborhood of v in G. The minimum density of an identifying code in G is
denoted by d∗(G). Given a positive integer k, let Tk be the triangular grid with k rows. In this
paper, we prove that d∗(T1) = d∗(T2) = 1/2, d∗(T3) = d∗(T4) = 1/3, d∗(T5) = 3/10,
d∗(T6) = 1/3 and d∗(Tk) = 1/4 + 1/(4k) for every k ≥ 7 odd. Moreover, we prove
that 1/4 + 1/(4k) ≤ d∗(Tk) ≤ 1/4 + 1/(2k) for every k ≥ 8 even. We conjecture that
d∗(Tk) = 1/4 + 1/(2k) for every k ≥ 8 even.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph G and v a vertex of G. The neighborhood of v, denoted by N(v), is the set of vertices adjacent to v in G, and
the closed neighborhood of v is the set N[v] = N(v) ∪ {v}.

Given a set C ⊆ V (G), the identifier of a vertex v ∈ V (G) is C[v] = N[v]∩C . We say that C is an identifying code of G if every
vertex has non-empty identifier and, for all distinct u and v, u and v have distinct identifiers. Formally, C is an identifying
code if

(i) for all v ∈ V (G), C[v] ̸= ∅, and
(ii) for all distinct u, v ∈ V (G), C[u] ̸= C[v].

Hence an identifying code is a set such that the vertices have non-empty distinct identifiers.
Let G be a (finite or infinite) graph with bounded maximum degree. For any non-negative integer r and vertex v, we

denote by Br (v) the ball of radius r in G centered at v, that is Br (v) = {x | dist(v, x) ≤ r}. For any set of vertices C ⊆ V (G),
the density of C in G, denoted by d(C,G), is defined by

d(C,G) = lim sup
r→+∞

|C ∩ Br (v0)|
|Br (v0)|

,

where v0 is an arbitrary vertex in G. The infimum of the density of an identifying code in G is denoted by d∗(G). Observe that
if G is finite, then d∗(G) = |C∗

|/|V (G)|, where C∗ is a minimum-size identifying code of G.
The problem of finding low-density identifying codes was introduced in [9] in relation to fault diagnosis in arrays of

processors. Here the vertices of an identifying code correspond to controlling processors able to check themselves and their
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neighbors. Thus the identifying property guarantees location of a faulty processor from the set of ‘‘complaining’’ controllers.
Identifying codes are also used in [10] to model a location detection problem with sensor networks.

Particular interest was dedicated to grids as many processor networks have a grid topology. There are three regular
infinite grids in the plane, namely the hexagonal grid, the square grid and the triangular grid.

Regarding the infinite hexagonal grid GH , the best upper bound on d∗(GH ) is 3/7 and comes from two identifying codes
constructed by Cohen et al. [5]; these authors also proved a lower bound of 16/39. This lower boundwas improved to 12/29
by Cranston and Yu [6]. Cukierman and Yu [7] further improved it to 5/12.

Regarding the infinite square grid GS , Cohen et al. [3] gave a periodic identifying code of GS with density 7/20. This density
was later proved to be optimal by Ben-Haim and Litsyn [1]. Some papers also obtained results for square grids with finite
number of rows. For any positive integer k, let Sk denote the square grid with k rows. Daniel, Gravier, andMoncel [8] showed
that d∗(S1) = 1/2 and d∗(S2) = 3/7. They also showed that, for every k ≥ 3, 7

20 −
1
2k ≤ d∗(Sk) ≤ min

{ 2
5 ,

7
20 +

2
k

}
. These

bounds were recently improved by Bouznif et al. [2] who established

7
20

+
1

20k
≤ d∗(Sk) ≤ min

{
2
5
,
7
20

+
3

10k

}
.

They also proved d∗(S3) = 3/7.
The infinite triangular grid GT is the infinite graph with vertices in Z × Z such that N((x, y)) = {(x, y ± 1), (x ± 1, y), (x −

1, y + 1), (x + 1, y − 1)}. Given an integer k ≥ 2, let [k] = {1, . . . , k} and let Tk be the subgraph of GT induced by the
vertex set {(x, y) ∈ Z × [k]}. Karpovsky et al. [9] showed that d∗(GT ) = 1/4. Trivially, T1 = S1. Hence d∗(T1) = 1/2. In
this paper, we prove several results regarding the density of an identifying code of Tk, k > 1. We prove that d∗(T2) = 1/2,
d∗(T3) = d∗(T4) = 1/3, d∗(T5) = 3/10, d∗(T6) = 1/3 and d∗(Tk) = 1/4+1/(4k) for every k ≥ 7 odd. Moreover, we prove that
1/4 + 1/(4k) ≤ d∗(Tk) ≤ 1/4 + 1/(2k) for every k ≥ 8 even. We conjecture that the upper bound is the optimum density.

2. The infinite triangular grid with two, three or six rows

In this section we prove the following theorem.

Theorem 1. d∗(T2) = 1/2, d∗(T3) = 1/3 and d∗(T6) = 1/3.

From the identifying codes of Figs. 1–3, we obtain the following upper bounds: d∗(T2) ≤ 1/2, d∗(T3) ≤ 1/3 and
d∗(T6) ≤ 1/3. In other words, consider the sets C2,a, C2,b, C3,a, C3,b, C6 given below.

C2,a = {(x, 1) | x ≡ 1, 3 mod 5} ∪ {(x, 2) | x ≡ 1, 2, 4 mod 5};
C2,b = {(x, 1) | x ≡ 1, 2, 3, 4 mod 5} ∪ {(x, 2) | x ≡ 2 mod 5};
C3,a = {(x, 1) | x ≡ 1 mod 2} ∪ {(x, 3) | x ≡ 1 mod 2};
C3,b = {(x, 1) | x ≡ 1 mod 3} ∪ {(x, 2) | x ≡ 2 mod 3} ∪ {(x, 3) | x ≡ 3 mod 3};
C6 = {(x, 1), (x, 3) | x odd } ∪ {(x, 5) | x ∈ Z}.

It is easy to check that C2,a and C2,b are identifying codes of T2 with density 1/2, C3,a and C3,b are identifying codes of T3
with density 1/3, and C6 is an identifying code of T6 with density 1/3.

In order to prove the lower bounds, we introduce the notion of quasi-identifying code of T3. Roughly speaking, a
quasi-identifying code of T3 does not care about the last row. Formally, a quasi-identifying code C of T3 is a subset C ⊆ V (T3)
such that

(i) for all v ∈ V (T2), C[v] ̸= ∅, and
(ii) for all distinct u, v ∈ V (T2), C[u] ̸= C[v].

The main technical result of this section is the following.

Lemma 2. Every quasi-identifying code C ′ of T3 has density d(C ′, T3) at least 1/3.

Before proving this lemma, we show that this result implies Theorem 1.

Proof of Theorem 1. Notice that every identifying code C ′

3 of T3 is obviously a quasi-identifying code of T3. Then, from
Lemma 2, d(C ′

3, T3) ≥ 1/3.
Also notice that every identifying code C ′

2 of T2 is also a quasi-identifying code of T3. Then, from Lemma 2, d(C ′

2, T3) ≥ 1/3.
Since d(C ′

2, T3) = 2 · d(C ′

2, T2)/3, we obtain d(C ′

2, T2) ≥ 1/2.
Finally notice that every identifying code C ′

6 of T6 induces the following two quasi-identifying codes of T3:

C ′

3,a = {(x, y) | (x, y) ∈ C ′

6 and y ∈ {1, 2, 3}};
C ′

3,b = {(x, 7 − y) | (x, y) ∈ C ′

6 and y ∈ {4, 5, 6}}.

Then d(C ′

6, T6) ≥ 1/3, since, from Lemma 2, d(C ′

3,a, T3) ≥ 1/3 and d(C ′

3,b, T3) ≥ 1/3. □
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