# Low minor 5-stars in 3-polytopes with minimum degree 5 and no 6-vertices ${ }^{\text {* }}$ 

O.V. Borodin, A.O. Ivanova, D.V. Nikiforov<br>Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

## ARTICLE INFO

## Article history:

Received 21 September 2016
Received in revised form 2 March 2017
Accepted 2 March 2017

## Keywords:

Planar map
Planar graph
3-polytope
Structural properties
5-star
Height


#### Abstract

In 1940, in attempts to solve the Four Color Problem, H. Lebesgue gave an approximate description of the neighborhoods of 5 -vertices in the class $P_{5}$ of 3-polytopes with minimum degree 5.

Given a 3-polytope $P$, by $h(P)$ we denote the minimum of the maximum degrees (height) of the neighborhoods of 5-vertices (minor 5-stars) in $P$.

In 1996, S. Jendrol' and T. Madaras showed that if a polytope $P$ in $P_{5}$ is allowed to have a 5-vertex adjacent to four 5-vertices, then $h(P)$ can be arbitrarily large.

For each $P$ without vertices of degree 6 and 5 -vertices adjacent to four 5 -vertices in $P_{5}$, it follows from Lebesgue's Theorem that $h(P) \leq 41$. Recently, this bound was lowered to $h(P) \leq 28$ by 0 . Borodin, A. Ivanova, and T. Jensen and then to $h(P) \leq 23$ by 0 . Borodin and A. Ivanova.

In this paper, we prove that every such polytope $P$ satisfies $h(P) \leq 17$, which bound is sharp.


© 2017 Elsevier B.V. All rights reserved.

## 1. Introduction

The degree of a vertex or face $x$ in a convex finite 3-dimensional polytope (called a 3-polytope) is denoted by $d(x)$. A $k$-vertex is a vertex $v$ with $d(v)=k$. A $k^{+}$-vertex ( $k^{-}$-vertex) is one of degree at least $k$ (at most $k$ ). Similar notation is used for the faces. A 3-polytope with minimum degree $\delta$ is denoted by $P_{\delta}$. The weight of a subgraph $S$ of a 3-polytope is the sum of degrees of the vertices of $S$ in the 3-polytope. The height of a subgraph $S$ of a 3-polytope is the maximum degree of the vertices of $S$ in the 3-polytope. A $k$-star, a star with $k$ rays, $S_{k}(v)$ is minor if its center $v$ has degree at most 5 . In particular, the neighborhoods of 5 -vertices are minor 5-stars and vice versa. All stars considered in this note are minor. By $w\left(S_{k}\right)$ and $h\left(S_{k}\right)$ we denote the minimum weight and height, respectively, of minor $k$-stars in a given 3-polytope.

In 1904, Wernicke [15] proved that every $P_{5}$ has a 5 -vertex adjacent to a $6^{-}$-vertex. This result was strengthened by Franklin [9] in 1922 to the existence of a 5 -vertex with two $6^{-}$-neighbors. In 1940, in attempts to solve the Four Color Problem, Lebesgue [13, p. 36] gave an approximate description of the neighborhoods of 5-vertices in $P_{5}$ 's. In particular, this description implies the results in $[9,15]$ and shows that there is a 5 -vertex with three $7^{-}$-neighbors.

For $P_{5}$ 's, the bounds $w\left(S_{1}\right) \leq 11$ (Wernicke [15]) and $w\left(S_{2}\right) \leq 17$ (Franklin [9]) are tight. It was proved by Lebesgue [13] that $w\left(S_{3}\right) \leq 24$, which was improved in 1996 by Jendrol' and Madaras [11] to the sharp bound $w\left(S_{3}\right) \leq 23$. Furthermore, Jendrol' and Madaras [11] gave a precise description of minor 3-stars in $P_{5}$ 's. Lebesgue [13] proved $w\left(S_{4}\right) \leq 31$, which was strengthened by Borodin and Woodall [8] to the tight bound $w\left(S_{4}\right) \leq 30$. Note that $w\left(S_{3}\right) \leq 23$ easily implies $w\left(S_{2}\right) \leq 17$ and immediately follows from $w\left(S_{4}\right) \leq 30$ (in both cases, it suffices to delete a vertex of maximum degree from a minor star of the minimum weight). Recently, Borodin and Ivanova obtained a precise description of 4-stars in $P_{5}$ 's [4].

[^0]

Fig. 1. Replacements for faces in Fig. 2: (a) $B_{4}$ for each 4-face and (b) $B_{6}$ for each 6-face.

For arbitrary 3-polytopes, that is for $P_{3}$ 's, the following results concerning $(d-2)$-stars at $d$-vertices, $d \leq 5$, are known. Van den Heuvel and McGuinness [14] proved (in particular) that either $w\left(S_{1}(v)\right) \leq 14$ with $d(v)=3$, or $w\left(S_{2}(v)\right) \leq 22$ with $d(v)=4$, or $w\left(S_{3}(v)\right) \leq 29$ with $d(v)=5$. Balogh et al. [1] proved that there is a $5^{-}$-vertex adjacent to at most two $11^{+}$-vertices. Harant and Jendrol' [10] strengthened these results by proving (in particular) that either $w\left(S_{1}(v)\right) \leq 13$ with $d(v)=3$, or $w\left(S_{2}(v)\right) \leq 19$ with $d(v)=4$, or $w\left(S_{3}(v)\right) \leq 23$ with $d(v)=5$. Recently, we obtained a precise description of ( $d-2$ )-stars in $P_{3}$ 's [5].

For $P_{3}$ 's, the problem of describing ( $d-1$ )-stars at $d$-vertices, $d \leq 5$, called pre-complete stars, appears difficult. As follows from the double $n$-pyramid, the minimum weight $w\left(S_{d-1}\right)$ of pre-complete stars in $P_{4}$ 's can be arbitrarily large. Even when $w\left(S_{d-1}\right)$ is restricted by appropriate conditions, the tight upper bounds on it are unknown. Borodin et al. [2,3] proved (in particular) that if a planar graph with $\delta \geq 3$ has no edge joining two $4^{-}$-vertices, then there is a star $S_{d-1}(v)$ with $w\left(S_{d-1}(v)\right) \leq 38+d(v)$, where $d(v) \leq 5$ (see [2, Theorem 2.A]). Jendrol' and Madaras [12] proved that if the weight $w\left(S_{1}\right)$ of every edge in an $P_{3}$ is at least 9 , then there is a pre-complete star of height at most 20 , where the bound of 20 is best possible.

The more general problem of describing $d$-stars at $d$-vertices, $d \leq 5$, called complete stars, at the moment seems untractable for arbitrary 3-polytopes and difficult even for $P_{5} \mathrm{~s}$.

Here, we consider the 3-polytopes with $\delta=5$ and no 6 -vertices. By $h(P)$ we denote the minimum height of minor 5-stars in 3-polytope $P$. Jendrol' and Madaras [11] showed that if a polytope $P_{5}$ has a 5-vertex adjacent to four 5-vertices, then $h\left(P_{5}\right)$ can be arbitrarily large.

For each $P_{5}$ that has neither 6-vertices nor 5-vertices adjacent to four 5-vertices, it follows from Lebesgue's Theorem that $h\left(P_{5}\right) \leq 41$. Recently, this bound was lowered to $h\left(P_{5}\right) \leq 28$ by Borodin, Ivanova, and Jensen [7] and then to $h\left(P_{5}\right) \leq 23$ in Borodin-Ivanova [6].

The purpose of this note is to prove the following fact.
Theorem 1. Every 3-polytope P with minimum degree 5 and neither 6-vertices nor 5-vertices adjacent to four 5-vertices satisfies $h(P) \leq 17$, which bound is best possible.

As shown in [7], there is a 3-polytope $P$ with minimum degree 5 and no 5-vertices adjacent to four 5-vertices such that $h(P)=20$.

## 2. Proof of Theorem 1

## The tightness of the bound 17

In Fig. 1(a), we see a configuration $B_{4}$ to be put into each 4-face $f$ of the graph in Fig. 2 so as the two opposite vertices in $f$ labeled with 5 correspond to the boundary vertices in $B_{4}$ having five ingoing edges. Note that the other two boundary vertices of $f$ have four ingoing edges each.

The configuration $B_{6}$ in Fig. 1(b) has six boundary vertices, whose ingoing degrees alternate from 4 to 7 . We put a copy of $B_{6}$ into each of the four 6 -faces in Fig. 2 according to the labeling.

After inserting all $B_{4}$ s and $B_{6}$ s into the graph $H$ in Fig. 2 followed by deleting all original edges in $H$, we obtain a semitriangulation. Gluing two such semi-triangulations along the outside cycle results in a triangulation with $\delta=5$ and such that each 5 -vertex is adjacent to a vertex of degree at least $7+5+5=5+4+4+4=17$ and another $7^{+}$-vertex, as desired. This construction has about 3000 vertices.

# https://daneshyari.com/en/article/5776915 

Download Persian Version:

## https://daneshyari.com/article/5776915

## Daneshyari.com


[^0]:    th The authors' work was supported by the Russian Scientific Foundation (grant 16-11-10054).
    E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova), zerorebelion@mail.ru (D.V. Nikiforov).

