Double-critical graph conjecture for claw-free graphs

Martin Rolek, Zi-Xia Song *
Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States

ARTICLE INFO

Article history:

Received 3 October 2016
Received in revised form 28 February 2017
Accepted 2 March 2017
Available online 30 March 2017

Keywords:

Vertex coloring
Double-critical graphs
Claw-free graphs

Abstract

A connected graph G with chromatic number t is double-critical if $G \backslash\{x, y\}$ is $(t-2)$ colorable for each edge $x y \in E(G)$. The complete graphs are the only known examples of double-critical graphs. A long-standing conjecture of Erdős and Lovász from 1966, which is referred to as the Double-Critical Graph Conjecture, states that there are no other doublecritical graphs. That is, if a graph G with chromatic number t is double-critical, then G is the complete graph on t vertices. This has been verified for $t \leq 5$, but remains open for $t \geq 6$. In this paper, we first prove that if G is a non-complete, double-critical graph with chromatic number $t \geq 6$, then no vertex of degree $t+1$ is adjacent to a vertex of degree $t+1, t+2$, or $t+3$ in G. We then use this result to show that the Double-Critical Graph Conjecture is true for double-critical graphs G with chromatic number $t \leq 8$ if G is claw-free.

© 2017 Published by Elsevier B.V.

1. Introduction

All graphs considered in this paper are finite and without loops or multiple edges. For a graph G, we will use $V(G)$ to denote the vertex set, $E(G)$ the edge set, $e(G)$ the number of edges, $\alpha(G)$ the independence number, $\omega(G)$ the clique number, $\chi(G)$ the chromatic number, and \bar{G} the complement of G. For a vertex $x \in V(G)$, we will use $N_{G}(x)$ to denote the set of vertices in G which are adjacent to x. We define $N_{G}[x]=N_{G}(x) \cup\{x\}$ and $d_{G}(x)=\left|N_{G}(x)\right|$. Given vertex sets $A, B \subseteq V(G)$, we say that A is complete to (resp. anti-complete to) B if for every $a \in A$ and every $b \in B, a b \in E(G)$ (resp. $a b \notin E(G)$). The subgraph of G induced by A, denoted $G[A]$, is the graph with vertex set A and edge set $\{x y \in E(G): x, y \in A\}$. We denote by $B \backslash A$ the set $B-A, e_{G}(A, B)$ the number of edges between A and B in G, and $G \backslash A$ the subgraph of G induced on $V(G) \backslash A$, respectively. If $A=\{a\}$, we simply write $B \backslash a, e_{G}(a, B)$, and $G \backslash a$, respectively. A graph H is an induced subgraph of a graph G if $V(H) \subseteq V(G)$ and $H=G[V(H)]$. A graph G is claw-free if G does not contain $K_{1,3}$ as an induced subgraph. Given two graphs G and H, the union of G and H, denoted $G \cup H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Given two isomorphic graphs G and H, we may (with a slight but common abuse of notation) write $G=H$. A cycle with $t \geq 3$ vertices is denoted by C_{t}. Throughout this paper, a proper vertex coloring of a graph G with k colors is called a k-coloring of G.

In 1966, the following conjecture of Lovász was published by Erdős [6] and is known as the Erdős-Lovász Tihany Conjecture.

Conjecture 1.1. For any integers $s, t \geq 2$ and any graph G with $\omega(G)<\chi(G)=s+t-1$, there exist disjoint subgraphs G_{1} and G_{2} of G such that $\chi\left(G_{1}\right) \geq s$ and $\chi\left(G_{2}\right) \geq t$.

To date, Conjecture 1.1 has been shown to be true only for values of $(s, t) \in\{(2,2),(2,3),(2,4),(3,3),(3,4),(3,5)\}$. The case $(2,2)$ is trivial. The case $(2,3)$ was shown by Brown and Jung in 1969 [3]. Mozhan [10] and Stiebitz [14] each independently showed the case $(2,4)$ in 1987. The cases $(3,3),(3,4)$, and $(3,5)$ were also settled by Stiebitz in 1987 [15].

[^0]Recent work on the Erdős-Lovász Tihany Conjecture has focused on proving the conjecture for certain classes of graphs. Kostochka and Stiebitz [9] showed the conjecture holds for line graphs. Balogh, Kostochka, Prince, and Stiebitz [2] then showed that the conjecture holds for all quasi-line graphs and all graphs G with $\alpha(G)=2$. More recently, Chudnovsky, Fradkin, and Plumettaz [4] proved the following slight weakening of Conjecture 1.1 for claw-free graphs, the proof of which is long and relies heavily on the structure theorem for claw-free graphs developed by Chudnovsky and Seymour [5].

Theorem 1.2. Let G be a claw-free graph with $\chi(G)>\omega(G)$. Then there exists a clique K with $|V(K)| \leq 5$ such that $\chi(G \backslash V(K))>$ $\chi(G)-|V(K)|$.

The most recent result related to the Erdős-Lovász Tihany Conjecture is due to Stiebitz [13], who showed that for integers $s, t \geq 2$, any graph G with $\omega(G)<\chi(G)=s+t-1$ contains disjoint subgraphs G_{1} and G_{2} of G with either $\chi\left(G_{1}\right) \geq s$ and $\operatorname{col}\left(G_{2}\right) \geq t$, or $\operatorname{col}\left(G_{1}\right) \geq s$ and $\chi\left(G_{2}\right) \geq t$, where $\operatorname{col}(H)$ denotes the coloring number of a graph H.

If we restrict $s=2$ in Conjecture 1.1, then the Erdős-Lovász Tihany Conjecture states that for any graph G with $\chi(G)>\omega(G) \geq 2$, there exists an edge $x y \in E(G)$ such that $\chi(G \backslash\{x, y\}) \geq \chi(G)-1$. To prove this special case of Conjecture 1.1, suppose for a contradiction that no such edge exists. Then $\chi(G \backslash\{x, y\})=\chi(G)-2$ for every edge $x y \in E(G)$. This motivates the definition of double-critical graphs. A connected graph G is double-critical if for every edge $x y \in E(G)$, $\chi(G \backslash\{x, y\})=\chi(G)-2$. A graph G is t-chromatic if $\chi(G)=t$. We are now ready to state the following conjecture, which is referred to as the Double-Critical Graph Conjecture, due to Erdős and Lovász [6].

Conjecture 1.3. Let G be a double-critical, t-chromatic graph. Then $G=K_{t}$.
Since Conjecture 1.3 is a special case of Conjecture 1.1, it has been settled in the affirmative for $t \leq 5$ [10,14], for line graphs [9], and for quasi-line graphs and graphs with independence number two [2]. Representing a weakening of Conjecture 1.3, Kawarabayashi, Pedersen, and Toft [8] have shown that any double-critical, t-chromatic graph contains K_{t} as a minor for $t \in\{6,7\}$. As a further weakening, Pedersen [11] showed that any double-critical, 8 -chromatic graph contains K_{8}^{-}as a minor. Albar and Gonçalves [1] later proved that any double-critical, 8-chromatic graph contains K_{8} as a minor. Their proof is computer-assisted. The present authors [12] gave a computer-free proof of the same result and further showed that any double-critical, t-chromatic graph contains K_{9} as a minor for all $t \geq 9$. We note here that Theorem 1.2 does not completely settle Conjecture 1.3 for all claw-free graphs. Recently, Huang and Yu [7] proved that the only double-critical, 6 -chromatic, claw-free graph is K_{6}. We prove the following main results in this paper. Theorem 1.4 is a generalization of a result obtained in [8] that no two vertices of degree $t+1$ are adjacent in any non-complete, double-critical, t-chromatic graph.

Theorem 1.4. If G is a non-complete, double-critical, t-chromatic graph with $t \geq 6$, then for any vertex $x \in V(G)$ with $d_{G}(x)=t+1$, the following hold:
(a) $e\left(\overline{G\left[N_{G}(x)\right]}\right) \geq 8$; and
(b) for any vertex $y \in N_{G}(x), d_{G}(y) \geq t+4$. Furthermore, if $d_{G}(y)=t+4$, then $\left|N_{G}(x) \cap N_{G}(y)\right|=t-2$ and $\overline{G\left[N_{G}(x)\right]}$ contains either only one cycle, which is isomorphic to C_{8}, or exactly two cycles, each of which is isomorphic to C_{5}.
Corollary 1.5 follows immediately from Theorem 1.4.
Corollary 1.5. If G is a non-complete, double-critical, t-chromatic graph with $t \geq 6$, then no vertex of degree $t+1$ is adjacent to a vertex of degree $t+1, t+2$, or $t+3$ in G.

We then use Corollary 1.5 to prove the following main result.
Theorem 1.6. Let G be a double-critical, t-chromatic graph with $t \in\{6,7,8\}$. If G is claw-free, then $G=K_{t}$.
The rest of this paper is organized as follows. In Section 2, we first list some known properties of non-complete, doublecritical graphs obtained in [8] and then establish a few new ones. In particular, Lemma 2.4 turns out to be very useful. Our new lemmas lead to a very short proof of Theorem 1.6 for $t=6,7$, which we place at the end of Section 2 . We prove the remainder of our main results in Section 3.

2. Preliminaries

The following is a summary of the basic properties of non-complete, double-critical graphs shown by Kawarabayashi, Pedersen, and Toft in [8].

Proposition 2.1. If G is a non-complete, double-critical, t-chromatic graph, then all of the following are true.
(a) G does not contain K_{t-1} as a subgraph.
(b) For all edges $x y$, every $(t-2)$-coloring $c: V(G) \backslash\{x, y\} \rightarrow\{1,2, \ldots, t-2\}$ of $G \backslash\{x, y\}$, and any non-empty sequence $j_{1}, j_{2}, \ldots, j_{i}$ of i different colors from $\{1,2, \ldots, t-2\}$, there is a path of order $i+2$ with vertices $x, v_{1}, v_{2}, \ldots, v_{i}, y$ in order such that $c\left(v_{k}\right)=j_{k}$ for all $k \in\{1,2, \ldots, i\}$.

https://daneshyari.com/en/article/5776917

Download Persian Version:
https://daneshyari.com/article/5776917

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mrolek@knights.ucf.edu (M. Rolek), Zixia.Song@ucf.edu (Z.-X. Song).

