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a b s t r a c t

Inspired by Bondarenko’s counter-example to Borsuk’s conjecture,wenotice some strongly
regular graphs that provide examples of ball packings whose chromatic numbers are
significantly higher than the dimensions. In particular, from generalized quadrangles we
obtain unit ball packings in dimension q3 − q2 + q with chromatic number q3 + 1, where
q is a prime power. This improves the previous lower bounds for the chromatic number of
ball packings.

© 2017 Elsevier B.V. All rights reserved.

1. The problem and previous works

A ball packing in d-dimensional Euclidean space is a collection of balls with disjoint interiors. The tangency graph of a ball
packing takes the balls as vertices and the tangent pairs as edges. The chromatic number of a ball packing is defined as the
chromatic number of its tangency graph.

The Koebe–Andreev–Thurston disk packing theorem says that every planar graph is the tangency graph of a
2-dimensional ball packing. The following question is asked by Bagchi and Datta in [2] as a higher dimensional analogue
of the four-color theorem:

Problem. What is the maximum chromatic number χ (d) over all the ball packings in dimension d?

The authors gave d + 2 ≤ χ (d) as a lower bound since it is easy to construct d + 2 mutually tangent balls. By ordering
the balls by size, the authors also argued that κ(d)+ 1 is an upper bound, where κ(d) is the kissing number for dimension d.
For information, the current asymptotic bounds for κ(d) are [21,29]

20.2075...n(1+o(1))
≤ κ(d) ≤ 20.401n(1+o(1)).

However, the case of d = 3 has already been investigated by Maehara [25], who proved that 6 ≤ χ (3) ≤ 13. His
construction for the lower bound uses a variation of Moser’s spindle, which is the tangency graph of a unit disk packing in
dimension 2 with chromatic number 4, and the following lemma:

Lemma. If there is a unit ball packing in dimension d with chromatic number χ , then there is a ball packing in dimension d + 1
with chromatic number χ + 2.
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The technique of Maehara [25] can be easily generalized to higher dimensions and gives d + 3 ≤ χ (d).
Another progress ismade by Cantwell in an answer onMathOverflow [9], who proved that the graph of the halved 5-cube

(also called the Clebsch graph) is the tangency graph of a 5-dimensional unit ball packing with chromatic number 8. Then
Lemma implies that 10 ≤ χ (6). This argument can be generalized to higher dimensions using a result of Linial, Meshulam
and Tarsi [24], and gave d + 4 ≤ χ (d) for d = 2k

− 2.
As we have seen, both constructions study the chromatic number of unit ball packings and invoke Lemma. We will do

the same. A unit ball packing can be regarded as a set of points such that the minimum distance between pairs of points is at
least 1, then the tangency graph of the packing is the unit-distance or minimum-distance graph for these points. By ordering
the unit balls by height, we see that the chromatic number of a unit ball packing is at most one plus the one-side kissing
number.

Recall that the finite version of the Borsuk conjecture can be formulated as follows: the chromatic number of the
maximum-distance graph for a point set in Rd is at most d + 1. So the chromatic number problem for unit ball packings
is the ‘‘opposite’’ of the Borsuk conjecture. The Borsuk conjecture was first disproved by Kahn and Kalai [22]. Their result
leads to a sub-exponential lower bound for the chromatic number ofmaximum-distance graphs. For comparison, if no bound
is imposed to the distances, the chromatic number of general unit-distance graphs has an exponential lower bound [12].

Recently, Bondarenko [3] found a counter-example for Borsuk conjecture in dimension 65. His construction was then
slightly improved by Jenrich [20] to dimension 64, which is the current record for the smallest counter-example. Their
construction is based on geometric representations of strongly regular graphs. In this note, we use the technique of
Bondarenko to find unit ball packings with strongly regular tangency graphs, whose chromatic numbers are significantly
higher than their dimensions. In particular

Theorem. For every prime power q, there is a unit ball packing of dimension d = q3 − q2 + q whose tangency graph is strongly
regular with chromatic number χ (d) = q3 + 1.

Examples are given by the graphs of generalized quadrangles with parameters (q, q2). This yields the first non-constant
lower bound for the difference χ (d) − d.

Remark 1. The current lower bound for χ (d) is linear and the upper bound is exponential. Improvements are encouraged
for both asymptotic bounds. For information, the tangency graph of a ball packing in dimension d has a small clique number
(≤d+ 2). On the other hand, there exist unit ball packings whose tangency graphs have large minimum degrees (>2

√
d) [1].

2. Strongly regular graphs

We use [8] for general references on strongly regular graphs.
Let G be a strongly regular graph with parameters (v, k, λ, µ). That is, G is a k-regular graph on v vertices such that every

pair of adjacent vertices has λ neighbors in common and every pair of non-adjacent vertices has µ neighbors in common.
We assume that

λ − µ ≥ −2k/(v − 1). (1)

If this is not the case, we may replace G by its complement Ḡ, which is a strongly regular graph with parameters (v, v − k −

1, v − 2k − 2 + µ, v − 2k + λ). For our study of ball packings, we may focus on connected graphs, therefore µ > 0. For
any vertex of G, the graphs induced by its neighbors in G and by its neighbors in Ḡ are respectively the first and the second
subconstituent of G.

The adjacency matrix A of G has three eigenvalues k, r , swith multiplicities 1, f , g , respectively. They can be expressed in
terms of the parameters as follows:

r, s = (λ − µ ± δ)/2,
f , g = (v − 1 ± ∆)/2,

where δ =

√
(λ − µ)2 + 4(k − µ) and ∆ = ((v − 1)(µ − λ)− 2k)/δ ≤ 0. The eigenvalues of Ḡ are v − k− 1, −s− 1, −r − 1

with multiplicities 1, g , f , respectively. Note that r > 0 > s + 1 and f ≤ g .
Let I be the identity matrix and J the all-ones matrix. Then

E = (A − sI)(I − J/v)

is an eigenmatrix of A corresponding to the eigenvector r , and the column vectors of E (labeled by vertices of G) form a
spherical 2-distance set on the sphere Sf−1

⊂ Rf , with angles cosα = r/k for adjacent vertices and cosβ = −(r + 1)/(v −

k − 1) for non-adjacent vertices [3]; see also [6]. By putting a ball of radius sin(α/2) =
√
(1 − r/k)/2 at each point of the

2-distance set, we obtain a ball packing whose tangency graph is G.
By Hoffman’s bound [18] (see also [11] [6]), the clique number of the complement ω(Ḡ) is at most 1+ (v − k−1)/(1+ r),

so the chromatic number χ (G) is at least

v/

(
1 +

v − k − 1
1 + r

)
= 1 − k/s.



Download English Version:

https://daneshyari.com/en/article/5776919

Download Persian Version:

https://daneshyari.com/article/5776919

Daneshyari.com

https://daneshyari.com/en/article/5776919
https://daneshyari.com/article/5776919
https://daneshyari.com

