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a b s t r a c t

Weconsider here the algebra of noncommutative symmetric functions, and twoof its bases,
the ribbon basis and the immaculate basis. Although a simple combinatorial formula is
known for expanding an element of the ribbon basis in the immaculate basis, the reverse
is not known. Using a sign-reversing involution, we prove an analogue of the classical
Jacobi–Trudi formula which is an expression for an immaculate function indexed by a
rectangle in the ribbon basis. We generalize this result to immaculate functions indexed
by products of rectangles, and use this to prove a combinatorial formula for immaculate
functions indexed by a rectangle of the form (2n).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider Schur-like bases of the Hopf algebra NSym of noncommutative symmetric functions, and
Schur-like elements in the Hopf algebra Sym of symmetric functions. The family of ribbon functions in NSym forms a
Schur-like basis of NSym [4]. The skew-Schur functions, and in particular ribbon Schur functions, are closely related to the
Schur basis of Sym and properties of this basis involving Ferrers diagrams [14]. Background material concerning the Hopf
algebras NSym and Sym is given in [4], and we adopt notation related to these Hopf algebras from [4].

Recently, the immaculate basis {Sα}α∈C of NSym was introduced in [2], and the shin basis { α}α∈C of NSym was recently
introduced in [4]. Both of these bases naturally project onto the Schur basis {sλ}λ∈P of Sym. For all λ ∈ P we have

χ (Sλ) = χ ( λ) = sλ,

where χ :NSym → Sym is the forgetful projection morphism. That is, χ (Hα) = hsort(α) for an element Hα of the complete
homogeneous basis of NSym, and hsort(α) denotes the element of the complete homogeneous basis {hλ}λ∈P of Sym indexed
by the partition sort(α).

An elegant combinatorial formula for expanding a ribbon function in the immaculate basis is proven in [2]. The ribbon
basis {Rα}α∈C has a positive expansion in the immaculate basis, with

Rβ =

∑
α≥ℓβ

Lα,βSα,

where ≤ℓ denotes the lexicographic order on C and Lα,β denotes the number of standard immaculate tableaux of shape α
and descent composition β . However, there is no known combinatorial formula of the form

Sβ =

∑
α≥ℓβ

Mα,βRα
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for expanding immaculate functions in the ribbon basis, and it is natural to consider combinatorial properties associated
with coefficients of the formMα,β .

We currently leave it as an open problem to construct a general combinatorial formula for coefficients of the form Mα,β ,
and we leave it as an open problem to prove a general combinatorial formula for expanding shin functions in the ribbon
basis. In this paper we prove several formulas for expanding certain classes of immaculate functions in the ribbon basis. In
particular, we use a simple sign-reversing involution to prove the following theorem.

Theorem 1. The identity

S(mn) =

∑
σ∈Sn

(−1)σR(m−1+σ1,m−2+σ2,...,m−n+σn)

holds for a rectangle (mn) ∈ C.

Although our formulas for immaculate functions are of interest in their own right, there is an obvious application of such
formulas in terms of commutative Schur functions. In particular, we obtain new formulas for expressing commutative Schur
functions such as Schur-rectangles as linear combinations of ribbon Schur functions. Applying the projection morphism χ

to both sides of Theorem 1, we obtain the following Jacobi–Trudi-like formula for commutative Schur-rectangles:

s(mn) =

∑
σ∈Sn

(−1)σ r(m−1+σ1,m−2+σ2,...,m−n+σn).

Lascoux and Pragacz in 1988 proved a formula for a Schur function in terms of a determinant consisting of ribbon
Schur functions, and in 1995 Hamel and Goulden proved a much more general formula for a Schur function in terms of
a determinant consisting of ribbon Schur functions [7,14]. Determining the coefficients arising in the expansion of a Schur
function as a linear combination of ribbon Schur functions is generally nontrivial. Of course, determinantal expressions given
by the Lascoux–Pragacz identity and the Hamel–Goulden identity may be expanded as a linear combination of ribbon Schur
functions using the classical ribbon Schur multiplication rule. This is the product rule whereby

rαrβ = rα·β + rα⊙β ,

whereα ·β denotes the concatenation ofα andβ andα⊙β denotes the near concatenation ofα andβ . However, determining
the coefficients resulting from such expansions is difficult, especially for larger determinants.

In Section 3, we generalize Theorem 1 for immaculate functions indexed by certain products of rectangles. Observe that
it is not in general true that

Sα =

∑
σ∈Sℓ(α)

(−1)σR(α1−1+σ1,α2−2+σ2,...,αℓ(α)−ℓ(α)+σℓ(α))

for α ∈ C. We presently leave the classification of compositions α such that the above equality holds as an open problem.
In Section 4, we prove a combinatorial rule for writing an immaculate function of the formS(2n) as a linear combination of

noncommutative ribbon Schur functions using ourmain result. This combinatorial rule shows how an immaculate-rectangle
of the formS(2n) may be written as a sum of 2n−1 elements in {Rα}α∈C indexed by compositions defined in terms of a partial
order ⊴ we construct on C. In contrast, our general formula for immaculate-rectangles is a sum over permutations of n
and hence has as many as n! terms. Our combinatorial formula for expressions of the form S(2n) is illustrated below. We
henceforward use French notation for diagrams, whereby the first entry of a composition is at the bottom of the diagram of
the composition.

S = R − R − R + R

− R + R + R − R

Write α ◀ β if diag(β) can be obtained from diag(α) by moving the rightmost cell of a row in diag(α) consisting of two
cells in a diagonal ‘‘strictly southeast’’ direction to the nearest row consisting of at least two cells, as illustrated in the example
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