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a b s t r a c t

A graph G is said to be 1-perfectly orientable (1-p.o. for short) if it admits an orientation such
that the out-neighborhood of every vertex is a clique in G. The class of 1-p.o. graphs forms
a common generalization of the classes of chordal and circular arc graphs. Even though
1-p.o. graphs can be recognized in polynomial time, no structural characterization of
1-p.o. graphs is known. In this paper we consider the four standard graph products: the
Cartesian product, the strong product, the direct product, and the lexicographic product.
For each of them, we characterize when a nontrivial product of two graphs is 1-p.o.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A tournament is an orientation of a complete graph.We study graphs having an orientation that is an out-tournament, that
is, a digraph in which the out-neighborhood of every vertex induces a tournament. (In-tournaments are defined similarly.)
Following the terminology of Kammer and Tholey [11], we say that an orientation of a graph is 1-perfect if it is an
out-tournament, and that a graph is 1-perfectly orientable (1-p.o. for short) if it has a 1-perfect orientation. In [11], Kammer
and Tholey introduced themore general concept of k-perfectly orientable graphs, as graphs admitting an orientation inwhich
the out-neighborhood of each vertex can be partitioned into at most k sets each inducing a tournament. They developed
several approximation algorithms for optimization problems on k-perfectly orientable graphs and related classes. It is easy to
see (simply by reversing the arcs) that 1-p.o. graphs are exactly the graphs that admit an orientation that is an in-tournament.
In-tournament orientations were called fraternal orientations in several papers [3–6,12,13,16].

The concept of 1-p.o. graphs was introduced in 1982 by Skrien [15] (under the name {B2}-graphs), where the problem of
characterizing 1-p.o. graphs was posed. While a structural understanding of 1-p.o. graphs is still an open question, partial
results are known. Bang-Jensen et al. observed in [1] that 1-p.o. graphs can be recognized in polynomial time via a reduction
to 2-SAT. Skrien [15] characterized graphs admitting an orientation that is both an in-tournament and an out-tournament
as exactly the proper circular arc graphs. All chordal graphs and all circular arc graphs are 1-p.o. [16], and, more generally,
so is any vertex-intersection graph of connected induced subgraphs of a unicyclic graph [1,14]. Every graph having a unique
induced cycle of order at least 4 is 1-p.o. [1].

In [8], several operations preserving the class of 1-p.o. graphs were described (see Section 2); operations that do not
preserve the property in general were also considered. In the same paper 1-p.o. graphs were characterized in terms of
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edge-clique covers, and characterizations of 1-p.o. cographs and of 1-p.o. co-bipartite graphs were given. In particular, a
cograph is 1-p.o. if and only if it is K2,3-free and a co-bipartite graph is 1-p.o. if and only if it is circular arc. A structural
characterization of line graphs that are 1-p.o. was given in [1].

In this paper we consider the four standard graph products: the Cartesian product, the strong product, the direct product,
and the lexicographic product. For each of these four products, we completely characterize when a nontrivial product of two
graphs G and H is 1-p.o. While the results for the Cartesian, the lexicographic, and the direct products turn out to be rather
straightforward, the characterization for the case of the strong product is more involved.

Some common features of the structure of the factors involved in the characterizations can be described as follows. In
the cases of the Cartesian and the direct product the factors turn out to be very sparse and very restricted, always having
components with at most one cycle. In the case of the lexicographic and of the strong product the factors can be dense. More
specifically, co-bipartite 1-p.o. graphs, including co-chain graphs in the case of strong products, play an important role in
these characterizations. The case of the strong product also leads to a new infinite family of 1-p.o. graphs (cf. Proposition 6.8).

The paper is organized as follows. Section 2 includes the basic definitions and notation, and recalls several known results
about 1-p.o. graphs that will be required for some of the proofs. In Sections 3–6 we deal, respectively, with 1-p.o. Cartesian
product graphs, 1-p.o. lexicographic product graphs, 1-p.o. direct product graphs, and 1-p.o. strong product graphs, and state
and prove the corresponding characterizations.

2. Preliminaries

All graphs considered in this paper are simple and finite, but may be either undirected or directed (in which case we
refer to them as digraphs). An edge in a graph connecting vertices u and v will be denoted simply uv. The neighborhood of
a vertex v in a graph G is the set of all vertices adjacent to v and will be denoted by NG(v). The degree of v is the size of its
neighborhood. A leaf in a graph is a vertex of degree 1. The closed neighborhood of v in G is the set NG(v) ∪ {v}, denoted by
NG[v]. An orientation of a graph G = (V , E) is a digraph D = (V , A) obtained by assigning a direction to each edge of G. Given
a digraphD = (V , A), the in-neighborhood of a vertex v inD, denoted byN−

D (v), is the set of all verticesw such that (w, v) ∈ A.
Similarly, the out-neighborhood of v in D is the set N+

D (v) of all vertices w such that (v, w) ∈ A. We may omit the subscripts
when the corresponding graph or digraph is clear from the context. Given an undirected graph G and a set S ⊆ V (G), we
define the neighborhood of S as N(S) = (

⋃
x∈SN(x)) \ S. The subgraph of G induced by S is the graph, denoted by G[S], with

vertex set S and edge set {uv : u ∈ S, v ∈ S, uv ∈ E(G)}. The distance between two vertices x and y in a connected graph G
will be denoted by dG(x, y) (or simply d(x, y)) and defined, as usual, as the length of a shortest x–y path.

Given two graphs G and H , their union is the graph G ∪ H with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). Their
disjoint union is the graph G + H with vertex set V (G) ∪̇ V (H) (disjoint union) and edge set E(G) ∪ E(H) (if G and H are not
vertex disjoint, we first replace one of themwith a disjoint isomorphic copy). Wewrite 2G for G+G. The join of two graphs G
and H is the graph denoted by G∗H and obtained from the disjoint union of G and H by adding to it all edges joining a vertex
of G with a vertex of H . Given two graphs G and H and a vertex v of G, the substitution of v in G for H consists in replacing v
with H and making each vertex of H adjacent to every vertex in NG(v) in the new graph.

A clique (resp., independent set) in a graphG is a set of pairwise adjacent (resp., non-adjacent) vertices ofG. The complement
of a graph G is the graph G with the same vertex set as G in which two distinct vertices are adjacent if and only if they are
not adjacent in G. The fact that two graphs G and H are isomorphic to each other will be denoted by G ∼= H . Given a family
F of graphs, we say that a graph is F-free if it has no induced subgraph isomorphic to a graph of F .

Kn, Cn and Pn denote the n-vertex complete graph, cycle, and path, respectively. The claw is the complete bipartite graph
K1,3, that is, a star with 3 edges, 3 leaves and one central vertex. The bull is a graph with 5 vertices and 5 edges, consisting of
a triangle with two disjoint pendant edges. The gem is the graph P4 ∗ K1, that is, the 5-vertex graph consisting of a 4-vertex
path plus a vertex adjacent to each vertex of the path.

For graph theoretic notions not defined above, see, e.g. [17].Wewill recall the definitions and some basic facts about each
of the four graph products studied in the respective sections (Sections 3–6). For each of the four considered products, we
say that the product of two graphs is nontrivial if both factors have at least 2 vertices. For further details regarding product
graphs and their properties, we refer to [7,10].

In [8], several results about 1-p.o. graphs were proved. In the rest of this section we list some of them for later use.

Proposition 2.1. No graph in the set {F1, F2, F3, F4} (see Fig. 1) is 1-perfectly orientable.

Two distinct vertices u and v in a graph G are said to be true twins if NG[u] = NG[v]. We say that a vertex v in a graph
G is simplicial if its neighborhood forms a clique and universal if it is adjacent to all other vertices of the graph, that is, if
NG[v] = V (G). The operations of adding a true twin, a universal vertex, or a simplicial vertex to a given graph are defined in
the obvious way.

Proposition 2.2. The class of 1-p.o. graphs is closed under each of the following operations:

(a) Disjoint union.
(b) Adding a true twin.
(c) Adding a universal vertex.
(d) Adding a simplicial vertex.
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